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Abstract

The high concentration of air pollutants in indoor environments can have a remarkable adverse impact 
on health and well-being, cognitive performance and productivity. Indoor air pollutants are especially 
problematic in naturally ventilated shared spaces such as classrooms and meeting rooms, where human-
generated pollutants can rise rapidly. When the inhabitants are exposed to indoor air pollution, recovering 
from its ramifications takes time and harms their well-being in the long run. In our approach, we seek to 
predict and prevent such hazardous situations instead of rectifying them after they happen. The prediction 
and prevention are accomplished through algorithms that can learn from the evolution of air pollutants and 
other variables to indicate whether or not a high level of pollution is forecast. We present two AI-enabled 
methods, one providing the forecast for the concentration level of carbon dioxide in the next 5 and 20 
minutes with 86% and 92% accuracy. The second algorithm provides predictive indicators about how the CO2 
level will evolve during the upcoming session (meeting or a course) before the session starts. We will discuss 
design implications and present design proposals on how these methods can inform interactive solutions for 
preventing high concentrations of indoor air pollutants.
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FIgUrE 1 The high concentration level of CO2 in meeting rooms is a common problem with health and productivity adverse consequences.

Introduction and Motivation

Evidence for direct links between exposure to high levels of carbon dioxide concentration and problems such 
as lethargy, headache, and cardiac arrhythmia, as well as difficulty in retaining attention, concentration, and 
cognitive performance, have been repeatedly presented in previous studies (e.g. Apte and Erdmann, 2002; 
Fisk, 2010; Erdmann et al. 2002; griffiths and Eftekhari, 2008). These health impacts reoccur commonly 
in shared closed spaces such as open-plan office spaces, conference halls, and classrooms. For example, a 
recent study of more than 100 schools in Switzerland revealed that students suffer in more than two-thirds 
of the learning spaces from a high concentration of carbon dioxide (Swiss Federal Office of Public Health, 
2016). research in this area builds on the Indoor Environmental Qualities (IEQ) literature that developed 
standards and quality norms for an acceptable range of parameters and architectural design guidelines 
to ensure those norms (e.g. Frontczak and Wargocki, 2011, Burge, 2014, redlich, 1997). However, it is only 
recently that studies of comfort in buildings consider the role of humans as active users of buildings. 
The new research directions also seek to explore the opportunities that new methods of sensing, actuation 
techniques, and, more broadly, data science can bring to the problem of indoor air quality (Alavi et al. 2017, 
Hsu et al. 2018, Meurer et al. 2019). Our research pursues a similar human-centric perspective enabled by 
data-oriented methods. We examine a novel approach in which the objective is to predict and prevent 
situations of discomfort rather than rectifying them after they occur. Two reasons motivate this preventive 
approach: (1) recovering from discomfort exhausts time, and cognitive effort, (2) regular exposure to 
situations that are even mildly uncomfortable can harm health in the long term.
It is worth noting that carbon dioxide is a common indicator for assessing ventilation efficiency and 
consequently the overall indoor air quality; particularly, it is a surrogate for the indoor concentration 
of occupant-generated pollutants. That is why our research focuses on the prediction of CO2 
concentration levels.
In this chapter, we present two methods of forecasting the evolution of carbon dioxide in naturally 
ventilated indoor environments, evaluate their performance, and conclude with a discussion of how to 
integrate them in a design solution.
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Real-Time Forecast

The primary source of carbon dioxide indoors is human respiration, and thus its concentration is directly 
related to the number of people in a room. Nevertheless, the level of CO2 in the air is also affected by many 
other variables such as room size, ventilation rate, relative humidity, and outdoor air quality (e.g. Fang et 
al. 1998). Since measuring all of these parameters entails heavy instrumentation of the environment and 
its inhabitants, we aim to develop a prediction model that can function independently of their variations. 
More precisely, the goal is to develop and compare real-time prediction algorithms that can indicate whether 
or not the CO2 level in a room will exceed a threshold solely based on previous measurements of carbon 
dioxide in the same office.

We can predict the level of carbon dioxide in office space by determining the likelihood L that after a 
time interval Delta T the concentration of carbon dioxide molecules in the air will exceed a value V. To do 
so, we examined Autoregressive (Ar) and Autoregressive Integrated Moving Average (ArIMA) on CO2 
measurements collected in shared office spaces and meeting rooms. We can gather the data by sensing 
systems that we have developed in collaboration with an industrial partner (see Figure 2), logging the 
concentration of air pollutants every five seconds. In addition, we examined Long Short-Term Memory 
(LSTM) – a recurrent neural network architecture – in which the problem was formulated as multiple parallel 
input and multi-step output case. To evaluate and compare the performance of the models, we consider 
two parameters: (1) the accuracy of prediction verified by the actual values and (2) the time required 
for training the model.

FIgUrE 2 Two sensing devices that we developed for recording the concentration of various indoor air pollutants. Connected to these 
devices, smartwatch and phone applications are provided to make available the live prediction of indoor air quality..

We computed the accuracy of a prediction based on the percentage of predicted values that fall within 
the confidence interval around the actual value with the confidence interval fixed to 30 ppm, based on the 
technical error range of the sensor. The model’s overall accuracy is the average accuracy of all instances of 
prediction executed on one day of data (four devices, 12 times prediction per hour, 10 hours, and excluding 
the last 20 minutes). We used a sliding window to test the Ar and ArIMA models: an observation buffer to 
build the model to predict the CO2 concentration in the next Delta T minutes.

We tested combinations of observation buffer sizes of 10 and 20 minutes and Delta T of 5, 10, and 15 
minutes. In all performed tests, the Autoregressive (Ar) model outperformed the other methods, both in 
terms of accuracy and in training time. Using Ar and a buffer size 20 minutes, we have achieved 97.66% 
accuracy of prediction for Delta T = 5 minutes and 87.51% for Delta T = 20 minutes.
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Pre-session Prediction

This section explores the opportunities to predict the evolution of air quality much more in advance: before 
a meeting (or a classroom session) starts. Instead of predicting the value of CO2 concentration level, the 
objective is to predict how the CO2 level will evolve during the upcoming session based on parameters such 
as the size of the room, number of participants, outdoor weather, time of the day, and so forth. In the first 
step, applying hierarchical clustering on the data collected from more than 1000 meeting sessions in 26 
meeting rooms , we distinguished seven patterns of evolution of CO2. Each pattern is identified by the initial 
value and the coefficient of the rise during the first and second half of the session. The data used in this part 
were collected using CO2 sensors developed by an industrial partner, installed on the meeting room desks, 
logging CO2 values every 10 seconds during five months. More than 300 employees in a naturally ventilated 
building used the meeting rooms of various sizes during sessions of typically around one hour long. 

In the second step, we search for a combination of external parameters that can suggest which of the 
seven patterns will occur in the upcoming session. This has been accomplished using Linear Discriminant 
Analysis (LDA) on a list of parameters including size of the room, number of occupants, indoor conditions 
(temperature, humidity, light, etc.), outdoor conditions (temperature, humidity, luminosity, wind speed, etc.), 
time of the day, as well as the concentration level of indoor air pollutants before the session.

The results suggest certain indications – in the form of a combination of external parameters – that can 
specify which of the seven patterns of CO2 evolution is most likely to occur in the upcoming session (Zhong 
et al. 2021). This can be particularly helpful in social situations when interrupting the session (meeting or 
lecture) to deal with environmental qualities that can harm productivity or may not be appropriate. In the 
next section, we describe how the coupling of the two predictive methods informs a design solution that can 
unobtrusively integrate into the social context of shared spaces.

From Prediction to Prevention: An Interactive Design Proposal

Once a high concentration of air pollutants is forecasted, it needs to be communicated with the users to 
take preventive action (e.g. opening a window). However, such notifications, particularly in cooperative 
work situations, can disrupt the workflow and eventually be counterproductive and substantially reduce 
the adoptability of the solution. Building on the two predictive algorithms presented in the last sections, 
the design solution that we develop seeks to find the right moment to notify the users to minimise the 
interruption cost and maximise the long-term impact. Figure 3 demonstrates how the interaction with the 
users is intelligently determined before and during a cooperative work or learning session. In a nutshell: 
depending on the likelihood that the level of CO2 passes the healthy threshold during the upcoming session, 
the users would be made aware of the prediction and the solution that can prevent the hazardous situation 
(operating one of the room openings for how long). In cases where the pre-session prediction does not 
provide an adequately high level of certainty, the real-time prediction provides notifications through various 
modalities, including ambient interfaces. The decision on whether or not the users should be notified before 
the session is informed by:

A the predictive models that anticipate the risk of high levels of CO2 pollution in the upcoming session (i.e. 
the pattern of evolution of CO2), and

B the design of the notification system during the session, informed by the predictive models (Ar) that with 
high accuracy estimated the level of CO2 in the next 5 to 20 minutes.
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3.     Interaction style based on social and physical context

2.      Determining external indicators for each pattern

1.      Classifying the pattern of CO2 Evolution

FIgUrE 3 When a high level of CO2 is forecasted, the design solution determines whether or not to notify the users. The notification can 
occur before or during the session. That depends on the predicted evolution pattern of CO2 among the seven patterns.
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Conclusion 

This contribution presents a preventive approach to the problem of poor indoor air quality in shared spaces. 
The broad objective is to predict the situations where the concentration of air pollutants, particularly carbon 
dioxide, may harm the well-being or cognitive performance of the occupants and inform them through 
interaction mechanisms that minimise the disruption caused by the awareness/notification system. 
To that end, we have developed a predictive model that can, with very high accuracy, indicate whether or 
not the level of CO2 would be higher than a certain threshold in 5 minutes. Furthermore, a second predictive 
model can specify before a collaborative session starts the pattern of evolution of CO2 during that session. 
Combining these two algorithms enabled a solution that can notify the users when action is needed while 
reducing the interruption costs.
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