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Abstract

There is an established idea – found in science fiction, architectural studios, and scientific papers alike – 
of stainable buildings crafted from bio-based materials, colonized by plant and animal life, and blending 
seamlessly into the natural surroundings. Such buildings might one day be built, maintained and remodelled 
by swarms of autonomous robots, allowing them to evolve in response to the changing needs of their 
inhabitants. Inspired by that vision, this paper contributes to the field of swarm intelligence with a focus on 
robotic construction and human-swarm interaction. Along with a short literature review on robotic building, 
swarm intelligence and biocompatible building materials, the paper presents an open-source simulation of 
abstracted termite-like swarm construction. The focus is mainly on human-swarm interaction, specifically 
how to influence the emergent behaviour of an autonomous swarm in order to elicit a desired outcome while 
retaining the robustness and adaptability of a self-organized system. The simulator is used to demonstrate 
a set of four autonomous swarm behaviours that are representative of construction tasks.
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1 Context 

The mainstream construction industry is recognised as being unsustainable, leading to a growing interest 
in ‘green building’. In the short to medium term, the most achievable approaches include the introduction 
of more sustainable materials, more efficient use of materials, and an emphasis on circularity of material 
use (Munaro et al., 2020). But other emerging technologies like additive manufacturing (Paolini et al., 2019), 
robotics and artificial intelligence (Debrah et al., 2022) also have potential to contribute in the longer term. 
Within robotics, an interesting emerging approach is the use of multi-robot teams or swarms (Dias et al., 
2021; Petersen et al., 2019), which gain efficiency through parallelism and robustness through redundancy 
and self-organisation. 

Combining all the above-mentioned approaches, one can envision a future in which buildings are constructed 
by autonomous robots from natural materials, becoming habitats for plant and animal life and utilizing the 
associated natural processes to help keep them cool and improve air quality. Construction, maintenance, 
remodelling and extension could be continuously performed by swarms of robots, influenced by the evolving 
needs of the building and its inhabitants. As suggested by Wiesenhuetter et al. (2016), the conventional 
perspective of buildings progressing linearly through design, construction, use and demolition phases could 
be reframed as an ongoing evolution in which design, construction and use occur simultaneously. 

As a step in that direction, this paper starts by briefly reviewing a selection of prior work in the domains of 
robotic building, swarm intelligence and environmentally friendly materials. It then goes on to present an 
original contribution in the form of an interactive swarm building simulation, which is used to demonstrate a 
number of interesting mechanisms for human-guided swarm coordination.

2 Related work: Robot Building 

A substantial body of prior work on robotic building exists, much of which is framed in a construction 
industry context. For a more thorough treatment of that field than space allows here, the reader is referred 
to Xu et al. (Xu et al., 2022) and Petersen et al. (Petersen et al., 2019). The use of robotics in construction can 
be divided into two main classes of approach, namely robotic assembly and robotic additive manufacturing 
(AM). Examples of robotic assembly include Bier et al. (Bier et al., 2020), which presents a `design to robotic 
production and assembly’ approach, including a large-scale physical prototype made of wooden beams 
and robotically milled panels, connected by 3D printed nodes. Similarly, Chiang et al. (Chiang et al., 2018) 
considers computational design, fabrication and robotic assembly as a single scheme. A segment of a larger 
freeform structure is robotically assembled by stacking rectangular beams, with the assembly sequence 
optimised to ensure that the partially built structure is stable. At smaller scale, the TERMES project set out 
to develop `robotic termites’ (Werfel et al., 2014). The system consists of a swarm of mobile robots that 
build structures from pre-manufactured, roughly cuboid blocks whose geometry facilitates alignment and 
interlocking. Each robot is capable of carrying and placing one block at a time. The system has a centralised 
controller (Deng et al., 2019) that uses an offline `compiler’ to pre-processes the desired structure and derive 
an optimal assembly sequence. Once the sequence of block placements is determined the individual robots 
execute it autonomously through decentralized control. In a similar vein, Allwright et al. (2014, 2019) present 
a multi-robot construction system that builds structures from pre-manufactured cubes. These robots 
cannot climb the structure, and instead have a crane-like mechanism that allows them to stack blocks up 



7 SPOOL | ISSN 2215-0897 | E-ISSN 2215-0900 | VOLUME #11 | ISSUE #1 
  
 

to three high. The control strategy is abstractly but strongly bio-inspired, in that it is fully decentralized 
and uses behavioural rules for individual robots combined with stigmergy (indirect coordination via changes 
to and sensing of the environment, which in termites is believed to be mediated in part by pheromones). 
The building blocks contain microcontrollers and multicolour LEDs, allowing them to display different colours 
under different conditions in lieu of a pheromone signal. Finally, flying robots have also been developed 
for building structures. Compared to ground robots they have the significant advantage of being able to 
move in 3D, but the disadvantage of lower payload capacity and greater energy expenditure. Augugliaro et 
al. (2013) use a quadcopter carrying a spool of rope to build tensile structures by wrapping the rope around 
anchor points, while Willmann et al. (2012) use a team of four quadcopters to build a 6m tall tower out of 
lightweight rectangular blocks. 

Examples of robotic AM include Oskam et al. (2022), which presents the computational design and robotic 
AM (using a bio-based material) to produce ‘plantetoids’ intended as habitats for animal and plant life. 
Tiryaki et al. (2019), Sustarevas et al. (2018) and Rivera et al. (2021) all present different variants on the 
concept of a conventional mobile robot platform carrying an industrial robot arm equipped with a material 
extruder. To varying degrees, they couple the kinematics of the mobile base with those of the arm, enlarging 
the build space beyond that of the arm alone. Zhang et al. (2018) further considers a ‘team’ of two robots 
and addresses the control and sequencing challenges associated with them collaborating to build a single 
structure. Finally, Zhang et al. (2022) presents an impressive ‘Aerial-AM’ system consisting of ‘BuilDrones’ 
and ‘ScanDrones’. The former are multirotor UAVs equipped with a lightweight actuated arm (for fine 
position control) and extruder, which deposits a lightweight cementous-polymeric composite. The latter 
are UAVs equipped with 3D scanners to monitor print quality and correct for deviations. The system is 
demonstrated printing simple structures like a cylindrical tower.

3 Related work: Swarm Intelligence 
in Architectural Design 

The field of swarm intelligence explores the underlying mechanisms and applications of self-organizing 
multi-agent systems. It is inspired by the behaviour and organizing principles of biological swarms, as 
described in the seminal book by Bonabeau et al. (1999). Swarm robotics embodies swarm intelligence in 
physical agents (sometimes simulated ‘physical agents’), and Dias et al. (2021) provides a good review of this 
topic. Swarm intelligence concepts have been applied to good effect for developing optimization algorithms 
(Tang et al., 2021) for various applications including architectural design. Buus (2006) adapts earlier models 
of termite-inspired building to elicit design of ‘human-like architecture’, which they characterize by key 
features like straight walls, right angled corners and openings for doors and windows. Von Mammen & Jacob 
(2008) use artificial evolution to tune the behaviour of an abstract swarm model inspired by bird flocking 
to create ‘architectural idea models’. The focus is on form, not physics, and the resulting 3D structures have 
striking and unconventional shapes. Wiesenhuetter et al. (2016) discusses the role of swarm intelligence in 
architecture, and argues that it could be used as a tool for optimizing a design based on one or more specific 
metrics, or as a means of creating adaptive structures that respond to environmental or other changes. 
Finally, Agirbas (2019) uses the software combination of Grasshopper and Rhino, along with an add-on called 
Locust which implements a swarm-based optimisation algorithm, to design Non-Euclidian geometries for a 
building façade that are optimised to give desired lighting conditions in the building.
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4 Related work: Materials 

Materials are not the focus of this paper, but a few potential examples are provided here. Humans have 
made buildings from `rammed earth’ (compressed sand, gravel, silt and clay) for thousands of years, and the 
fact that some of these buildings still stand is testament to the quality of this material. Another interesting 
approach is the use of microbially-induced calcite precipitation, in which ureolytic (Farrugia et al., 2019) or 
photosynthetic (Heveran et al., 2020) bacteria create biominerals (usually CaCO3), between grains of sand 
or soil, thereby increasing stiffness and strength. One could also potentially use living materials as explored 
in Camere & Karana (2018). The most plausible example they discuss is mycelium, which can be grown in 
various different organic substrates (including waste plant matter) and forms a solid network within that 
bulk material as it grows. Heinrich et al. (2019) discusses the possibility of creating `living buildings’ by 
integrating biological organisms into automated construction tasks. They suggest using a combination of 
static scaffolds, biological organisms and manual manipulation (which could be performed by robots) to 
shape the growth of the biological elements as desired.

5 Innovations 

The key benefits of swarms, namely robustness, flexibility and scalability (Dias et al., 2021) are due in 
large part to the use of distributed, self-organizing control strategies. But this approach also makes it 
hard to ‘design’ a desired group level behaviour, because that behaviour emerges through the interaction 
of the agents rather than being explicitly programmed. In the context of swarm construction, it is 
similarly challenging to develop control and coordination strategies that lead to the swarm following 
the specification for a structure that the human operator wants them to build. When developing control 
strategies for swarms, engineers often take inspiration from biological phenomena like ant foraging or 
termite nest construction, but these natural systems certainly don’t support external user input! The goal 
of swarm engineering is to develop approaches for designing desired swarm behaviour, which often involves 
abstracting and modifying biological mechanisms (Brambilla et al., 2013). 

The work presented here falls under the swarm engineering umbrella but focusses mainly on human-swarm 
interaction, motivated by the question: How can a human ‘conductor’ influence the emergent behaviour of 
an autonomous swarm in order to elicit a desired outcome while retaining the robustness and adaptability of 
a self-organized system? 

To that end, an interactive simulator was developed (see Methods) and a set of agent behaviours were 
implemented (see Results). The novelty of the work lies in how the biological concepts of stigmergic 
and template-based building (Perna & Theraulaz, 2017) were abstracted and applied. Combining 
various technologically feasible sensory modalities with user-input, the swarm performs several 
representative construction tasks.
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6 Results 

In line with most agent-based simulations, the model is an abstraction and simplification of actual swarm 
robotic construction. Its purpose is to develop and test organizational principles that could be translated 
to real robot builder swarms. Each experiment demonstrates a distinct mechanism that enables a group of 
agents, with only local sensing and decentralized control, to coordinate their efforts, generate large-scale 
structure, perform tasks that would be useful in a real construction context, and respond to human input. 
More details on the behaviours used in each of these experiments is provided in Methods.

 6.1 Terrain levelling

This experiment, illustrated in Figure 1, represents a pre-construction phase where uneven terrain must be 
levelled before it can be built on. 

In the simulation, agents can perceive a 3D depth map of their immediate surroundings. They assess the 
terrain’s curvature at their current location (refer to Methods). If they identify a mound, they are inclined 
to collect material, while if they are in a depression, they might deposit material. In both scenarios, the 
likelihood of action aligns approximately with the local curvature, i.e., they’re more likely to add or remove 
material if the mound or depression is more pronounced. Gradually, the terrain becomes progressively 
flatter. This mechanism is loosely inspired by research showing that local surface curvature influences soil 
displacement by termites (Calovi et al., 2019).

FIGURE 1 Initially random, lumpy terrain become increasingly smooth as the swarm fills depressions and excavates mounds. Panels A – C 
and D – F show the same snapshots in time (t = 0s, t = 30s and t = 180s), with the top row showing the 2D greyscale representation from 
the simulator itself (where lighter colours correspond to higher elevation), and the bottom row showing the same data as a 3D mesh plot.
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 6.2 Building a large-scale structure

This experiment, illustrated in Figure 2, represents the initial phase of constructing a building within a 
‘footprint’ defined by a human architect. It addresses the challenge: how do small individual agents, relying 
on local sensing, ensure the large-scale geometric accuracy of their build? The mechanism deployed here 
mirrors the termite’s ‘Royal Chamber’ construction, known to be facilitated by a queen-specific pheromone 
(Bonabeau et al., 1998).

The simulation employs a pheromone map (as described in Methods), which could be physically realized 
using a detectable chemical like ethanol, signal-emitting beacons (e.g., radiofrequency or audio), or GPS. 
In the experiment, the user designs the ‘building footprint’ via the software’s UI. This design is translated 
into a ‘blueprint pheromone’ template, exhibiting a blurry transition between ‘build’ and ‘no build’ zones, 
representative of chemical diffusion or sensor uncertainty.

Agents conduct a random walk, stochastically depositing or picking up material based on sensed pheromone 
concentration (see Methods). Over time, a ‘building’ forms according to the plan. Despite the template’s 
blurry boundaries and stochastic deposition, the structure emerges with defined edges due to the 
convergence of many random events on the probabilistically expected value.

FIGURE 2 A ‘building’ defined by a blueprint pheromone template is constructed on initially random terrain. Panel A shows a screenshot 
of the simulator (top left, initial agent positions and terrain map; bottom left, pheromone template; top right, user instructions; bottom 
right, individual agent views). Panels B – D and E – G show the same snapshots in time (t =3 0s, t = 60s and t = 180s), with the left column 
showing the 2D greyscale representation from the simulator itself (where lighter colours correspond to higher elevation), and the right 
column showing the same data as a 3D mesh plot.
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While the emergence of the building’s flat top and surrounding ground appears as a simulation artefact due 
to a numerical range limit on the terrain map, in a physical setting, equipping robots with an altitude sensor 
to control the build and excavation heights would offer a practical way to achieve the same result.

 6.3 Creating small-scale features

These experiments, illustrated in Figure 3 – 5, represent a later construction phase where small scale 
features must be added to a larger structure (like surface texture, ventilation holes or windows), or a 
repeating pattern needs to be applied across a large area (such as constructing support pillars, digging holes 
for plants, or creating drainage channels).

In this behavioural state, agents ‘see’ their surroundings (i.e., obtain a 3D depth map) and compare that view 
to a small-scale ‘vision template’ (inset in panel A of each figure), designed by the human user using the 
software’s UI and representing the desired appearance of an equivalent small area. The agents perform a 
random walk and continually compare their observable area to the ‘vision template’. They also ‘envision’ the 
outcome of adding or removing material and compare these two hypothetical cases to the ‘vision template’ 
as well (see Methods). If such actions improve the match to the template, they are executed. Gradually, the 
desired repeating pattern, albeit with some variability, manifests across the entire terrain map.

This variability results from stochastic agent behaviour and their localized, rather than global, perception. 
The degree of variability partially depends on the template’s nature. Figure 3 shows a template representing 
an isolated feature surrounded by empty space (e.g., a pillar). Here, sensing range and template provide 
sufficient information for approximate pillar spacing but not for precise alignment. Figure 4 depicts a 
continuous feature template (e.g., rows of trenches), providing better alignment information. However, 
errors can still occur, primarily when agents independently initiate the pattern in different areas during 
early construction stages. Figure 5 depicts an experiment using the same template as in Figure 4, but 
this time the agents were initialised clustered in the middle of the world, and the human user guided 
the swarm by placing pheromone. This more methodical construction approach reduces improves 
overall pattern alignment1.

1 Another repeat of the experiment shown in Figure 5, with user guidance of the swarm, is shown in Supplementary Video 1 (https://youtu.
be/p9uJOsB9LCg).
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FIGURE 3 Construction of ‘pillars’ based on a local vision template (inset in Panel A). Panels A to F show snapshots of the construction 
process in increments of 30s.

FIGURE 4 Construction of ‘trenches’ based on a local vision template (inset in Panel A). Panels A to F show snapshots of the construction 
process in increments of 30s.
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FIGURE 5 Construction of ‘trenches’ based on a local vision template (inset in Panel A), with the building activity of the swarm guided by a 
human overseer. Panels A to F show snapshots of the construction at 0s, 30s, 60s, 90s, 150s and 240s. Note how construction progresses 
through space as the swarm moves.

 6.4 Repairing a damaged structure based on local curvature sensing

This experiment, illustrated in Figure 6, is a simplified representation of a post-construction phase where 
agents maintain an existing building. The concept involves agents initially exploring the intact structure with 
local sensing to learn what ‘normal’ looks like. Here, that involves memorizing the structure’s maximum 
(most positive) and minimum (most negative) curvature. In a real-world application, training a neural 
network to recognize a range of ‘normal’ local features through computer vision techniques would enable a 
more complex version of this. 

Once familiar with the intact structure, the agents are switched to ‘maintenance mode’. They start 
investigating the structure for anomalies that diverge from their learned experience. In this simulation, 
anomalies are characterized by local curvature surpassing previously encountered limits. ‘Damage’ to 
the structure, represented by random lumps and pits, can be introduced by the user. On detecting these 
anomalies, agents add or remove material to ‘repair’ the structure.
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FIGURE 6 Repair of a damaged structure by the swarm. In this case only 3D mesh plots are shown, because these provide a better 
visualisation. A) The original, undamaged structure, which the swarm ‘learns’ the features of. B) Damage is introduced, in the form of 
localised lumps and holes in the surface. C) The swarm has begun recognising these anomalies and repairing them. D) Repair complete.

7 Conclusions 

This work presents promising algorithms that combine sensing and user input to achieve human-directed 
construction by a simulated robot swarm.  A user-defined global spatial template encoded in the intensity 
of a detectable quantity (e.g., chemical concentration, light intensity, electromagnetic field), sampled locally 
by the agents and used to modulate the probability of picking up or depositing material, was shown to 
successfully impose large-scale structure. Short-range sensing of 3D shape around the agent (achievable 
with laser scanning, time-of-flight cameras or structured light sensors) compared to a ‘desired’ local 
shape (learned or user-specified) and used to influence pickup and deposit probabilities was also shown 
to be effective. As agents move through space, continuously applying these ‘local templates’, order can be 
imposed at scales much larger than the sensing radius.
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For readers who want to explore these behaviours, experiment with modifications, or create new behaviours, 
the expandable open-source simulator (GitHub link in Methods) is complex enough to yield intriguing 
insights while remaining accessible to those with only intermediate Python programming skills.

8 Methods 

This paper provides only a concise description of the implementation due to space limitations. For further 
details, consult the source code2. The simulation is built in Python (3.11.3) and uses several standard libraries 
along with numpy, scipy, matplotlib and pygame (which you will need). It runs in real time, offering user 
control over various simulation features and behaviours. Numerical constants in the code can be easily 
modified. The presented experiments utilized the provided values. Individual components of the software 
are described below, and a high-level overview of the architecture is shown in Figure 7.

FIGURE 7 Main software components (left) and high-level program flow (right) of the simulator.

2 https://github.com/DrJordanBoyle/Spool_Builder_Swarm_Simulator/tree/main



16 SPOOL | ISSN 2215-0897 | E-ISSN 2215-0900 | VOLUME #11 | ISSUE #1 
  
 

 8.1 World

The world is defined by a terrain map and a pheromone map, which are square grids of square cells. The size 
of the world is specified by a parameter width (width = 300 here). Cells of the terrain map each store one 
integer in the range [0 – 255], where this value represents the amount of material (i.e. ‘height’ of the terrain) 
in that cell. During the simulation the evolving terrain map is visualised as a 2D greyscale image where black 
= 0 and white = 255. At any time, the user can export a snapshot of this 2D image or generate a 3D mesh 
plot using Python’s matplotlib library (if you are running the code in an IDE that supports this, like ‘Spyder’). 

Cells of the pheromone map each store three integers in the range [0 – 65,535] representing the concentrations 
of three different pheromone types. When developing the simulation, it was found that the pheromones 
benefitted from a higher resolution representation than the terrain, hence the different scale. 

The boundaries of the world can either be reflecting (as if enclosed by a wall) or wrapping (as if the world was 
toroidal), as selected by the user. 

 8.1.1 World: Initial conditions

The user can select between three options for the initial conditions of terrain map: empty (no initial terrain); 
random (‘lumpy’ terrain created through a combination of random number generation and Gaussian 
smoothing); template based (created by smoothing a binary template drawn by the user and then converting 
this to terrain values). The user can also choose to create a blueprint pheromone template (see Agent 
Behaviours). Finally, the user can choose whether agents are initialised spread out (at random positions in 
the world) or not (all grouped in the centre). 

 8.1.2 World: Updates

The terrain map and pheromone map are both modified during simulations. Agents can pickup or deposit 
terrain. When they do so, they decrease or increase (respectively) values of the terrain map in a rounded 
‘blob’ (height = 5 terrain units; radius = 5 cells) centred on their current position. The resulting terrain values 
are clipped to the range [0 – 255] which is admittedly unrealistic but necessary for practical reasons. 

The three pheromone types are used differently in the current implementation, though the same 
capabilities exist for all of them. Terrain pheromone is actually only used transiently as a computationally 
convenient way to achieve template-based initialisation of terrain map, so it won’t be discussed further here. 
Blueprint pheromone underlies one of the agent behaviours described later. It is user generated (through 
the UI) and the associated parameters have been set such that it does not change while the simulation 
runs. Build pheromone is more complex. If the agents deposit pheromone option is active, then whenever 
an agent picks up or deposits material, it also adds a circular ‘cloud’ (peak value at centre = 20 pheromone 
units; drops off linearly to zero over a radius of 50 cells) of build pheromone to the pheromone map centred 
on its current location. In addition, the concentration of build pheromone in each cell decays every time 
step, reducing by an amount proportional to the current concentration. As such, it will gradually disappear 
in any given location if not replenished. Finally, one of the ways the user can influence the behaviour of the 
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swarm is by manually adding (peak value at centre ≈ 16,000; drops off linearly to zero over a radius of 100 
cells) or removing (set = 0 within radius of 100 cells) build pheromone from a specific area by left or right 
clicking with the mouse.

 8.2 Agents 

The simulator supports an arbitrary number of agents (representing robots). The value of N=80 used here 
was found to be the maximum number for which the desired frame rate of 30FPS could be consistently 
achieved on the author’s laptop. Agents are stored as an array of instances of an AGENT class. Agent state is 
represented by set of class variables:

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = {(𝑥𝑥, 𝑦𝑦) ∈ ℝ} 

𝑝𝑝𝑜𝑜𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = {𝜃𝜃 ∈ ℝ} 

𝑏𝑏𝑏𝑏𝑝𝑝𝑏𝑏𝑏𝑏	𝑝𝑝𝑝𝑝𝑜𝑜𝑝𝑝𝑜𝑜 = {𝑝𝑝𝑏𝑏𝑏𝑏𝑜𝑜, 𝑏𝑏𝑜𝑜𝑙𝑙𝑜𝑜𝑏𝑏, 𝑔𝑔𝑏𝑏𝑝𝑝𝑏𝑏𝑜𝑜𝑏𝑏, 𝑏𝑏𝑝𝑝𝑙𝑙𝑜𝑜𝑏𝑏, 𝑜𝑜𝑜𝑜𝑝𝑝𝑜𝑜𝑝𝑝𝑜𝑜} 

𝑝𝑝𝑜𝑜𝑜𝑜𝑙𝑙𝑝𝑝𝑝𝑝𝑏𝑏𝑝𝑝	𝑝𝑝ℎ𝑜𝑜𝑜𝑜𝑝𝑝𝑒𝑒𝑝𝑝𝑝𝑝𝑜𝑜 = ?(𝑃𝑃ℎ!"#$% , 𝑃𝑃ℎ!$"&'(#)* , 𝑃𝑃ℎ*&((+#)) ∈ ℤB 

𝑙𝑙𝑏𝑏𝑜𝑜𝑙𝑙𝑜𝑜𝑝𝑝𝑏𝑏𝑜𝑜𝑜𝑜	𝑒𝑒𝑜𝑜𝑒𝑒𝑝𝑝𝑜𝑜𝑦𝑦 = {(𝑒𝑒𝑜𝑜𝑥𝑥,𝑒𝑒𝑝𝑝𝑝𝑝) ∈ ℝ} 

𝑜𝑜𝑔𝑔𝑜𝑜𝑝𝑝𝑝𝑝	𝑙𝑙𝑝𝑝𝑜𝑜𝑣𝑣 = DE
𝑝𝑝,,, ⋯ 𝑝𝑝,,.
⋮ ⋱ ⋮

𝑝𝑝/,, ⋯ 𝑝𝑝/,.

I J𝑝𝑝#,0 ∈ ℤK 

 

 

∆𝑃𝑃ℎ!"#$% = 𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝𝑜𝑜(𝑃𝑃ℎ!"#$%) − 𝑝𝑝𝑜𝑜𝑜𝑜𝑙𝑙𝑝𝑝𝑝𝑝𝑏𝑏𝑝𝑝	𝑝𝑝ℎ𝑜𝑜𝑜𝑜𝑝𝑝𝑒𝑒𝑝𝑝𝑝𝑝𝑜𝑜(𝑃𝑃ℎ!"#$%) 

 

 

𝑃𝑃*"() D
0.2, ∆𝑃𝑃ℎ!"#$% ≤ −5
	0.002, ∆𝑃𝑃ℎ!"#$% ≥ 5	
0.02, 𝑝𝑝𝑝𝑝ℎ𝑜𝑜𝑜𝑜𝑣𝑣𝑝𝑝𝑝𝑝𝑜𝑜							

 

 

 

𝜎𝜎 =
𝜋𝜋
4 

 

 

𝜃𝜃 = W𝜃𝜃 + ∆𝜃𝜃,			𝑋𝑋 < 	𝑃𝑃*"()
𝜃𝜃, 𝑝𝑝𝑝𝑝ℎ𝑜𝑜𝑜𝑜𝑣𝑣𝑝𝑝𝑝𝑝𝑜𝑜  

 

 

𝑥𝑥 = 𝑥𝑥 + 𝑆𝑆𝑝𝑝𝑜𝑜𝑜𝑜𝑏𝑏 × ∆𝑝𝑝 × cos 𝜃𝜃 

𝑦𝑦 = 𝑦𝑦 + 𝑆𝑆𝑝𝑝𝑜𝑜𝑜𝑜𝑏𝑏 × ∆𝑝𝑝 × sin 𝜃𝜃 

 

 

The software limits x,y to the range [0 → width] and θ to the range [0 → 2π]. The size of agent view is also a 
parameter that could be changed, but M=N=30 is what the author has always used.

 8.2.1 Behaviour 0: Default

This is the default behaviour, and is always active. Agents perform a random walk, biased by build 
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Then a random number, X, is generated from a uniform distribution in the range [0→1] and compared to the 
turn probability to determine whether the agent reorients. If it does, a turn angle  is drawn from a normal 
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Then the agent updates its position based on its speed and orientation:
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𝑝𝑝𝑜𝑜𝑜𝑜𝑙𝑙𝑝𝑝𝑝𝑝𝑏𝑏𝑝𝑝	𝑝𝑝ℎ𝑜𝑜𝑜𝑜𝑝𝑝𝑒𝑒𝑝𝑝𝑝𝑝𝑜𝑜 = ?(𝑃𝑃ℎ!"#$% , 𝑃𝑃ℎ!$"&'(#)* , 𝑃𝑃ℎ*&((+#)) ∈ ℤB 

𝑙𝑙𝑏𝑏𝑜𝑜𝑙𝑙𝑜𝑜𝑝𝑝𝑏𝑏𝑜𝑜𝑜𝑜	𝑒𝑒𝑜𝑜𝑒𝑒𝑝𝑝𝑜𝑜𝑦𝑦 = {(𝑒𝑒𝑜𝑜𝑥𝑥,𝑒𝑒𝑝𝑝𝑝𝑝) ∈ ℝ} 

𝑜𝑜𝑔𝑔𝑜𝑜𝑝𝑝𝑝𝑝	𝑙𝑙𝑝𝑝𝑜𝑜𝑣𝑣 = DE
𝑝𝑝,,, ⋯ 𝑝𝑝,,.
⋮ ⋱ ⋮

𝑝𝑝/,, ⋯ 𝑝𝑝/,.

I J𝑝𝑝#,0 ∈ ℤK 

 

 

∆𝑃𝑃ℎ!"#$% = 𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝𝑜𝑜(𝑃𝑃ℎ!"#$%) − 𝑝𝑝𝑜𝑜𝑜𝑜𝑙𝑙𝑝𝑝𝑝𝑝𝑏𝑏𝑝𝑝	𝑝𝑝ℎ𝑜𝑜𝑜𝑜𝑝𝑝𝑒𝑒𝑝𝑝𝑝𝑝𝑜𝑜(𝑃𝑃ℎ!"#$%) 

 

 

𝑃𝑃*"() D
0.2, ∆𝑃𝑃ℎ!"#$% ≤ −5
	0.002, ∆𝑃𝑃ℎ!"#$% ≥ 5	
0.02, 𝑝𝑝𝑝𝑝ℎ𝑜𝑜𝑜𝑜𝑣𝑣𝑝𝑝𝑝𝑝𝑜𝑜							

 

 

 

𝜎𝜎 =
𝜋𝜋
4 

 

 

𝜃𝜃 = W𝜃𝜃 + ∆𝜃𝜃,			𝑋𝑋 < 	𝑃𝑃*"()
𝜃𝜃, 𝑝𝑝𝑝𝑝ℎ𝑜𝑜𝑜𝑜𝑣𝑣𝑝𝑝𝑝𝑝𝑜𝑜  

 

 

𝑥𝑥 = 𝑥𝑥 + 𝑆𝑆𝑝𝑝𝑜𝑜𝑜𝑜𝑏𝑏 × ∆𝑝𝑝 × cos 𝜃𝜃 

𝑦𝑦 = 𝑦𝑦 + 𝑆𝑆𝑝𝑝𝑜𝑜𝑜𝑜𝑏𝑏 × ∆𝑝𝑝 × sin 𝜃𝜃 

 

 
Where Speed=100 cells/sec and 

Finally, two random numbers U and V are generated from a uniform distribution in the range [0→1] and 
compared to probabilities Ppickup and Pdeposit to determine whether the agent executes a pickup and deposit 
of material (as described in World: Updates). By default, these probabilities are both zero, but they can be 
modified by other behaviours, of which exactly one is always active (selected by the user through the UI).

 8.2.2 Behaviour 1: Idle

This is a minimal overlay on top of Behaviour 0, during which Ppickup=0 and Pdeposit=0. The only addition 
is that agents constantly monitor the local terrain curvature, which is obtained by computing the 
Laplacian of agent view:

∆𝑡𝑡 =
1
30 

 

 

𝓛𝓛 = ∇1(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡	𝑣𝑣𝑣𝑣𝑎𝑎𝑣𝑣) 

 

 

𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣 = gℒ,2,,2 + ℒ,2,,3 + ℒ,3,,2 + ℒ,3,,3i/4 

 

 

𝑚𝑚𝑎𝑎𝑚𝑚 = k𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣, 𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣 > 	𝑚𝑚𝑎𝑎𝑚𝑚
𝑚𝑚𝑎𝑎𝑚𝑚, 𝑜𝑜𝑡𝑡ℎ𝑎𝑎𝐶𝐶𝑣𝑣𝑣𝑣𝑒𝑒𝑎𝑎  

𝑚𝑚𝑣𝑣𝑎𝑎 = k𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣, 𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣 < 	𝑚𝑚𝑣𝑣𝑎𝑎
𝑚𝑚𝑣𝑣𝑎𝑎, 𝑜𝑜𝑡𝑡ℎ𝑎𝑎𝐶𝐶𝑣𝑣𝑣𝑣𝑒𝑒𝑎𝑎  

 

 

𝑃𝑃'#45"' = k𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣, 𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣 > 	0
0, 𝑜𝑜𝑡𝑡ℎ𝑎𝑎𝐶𝐶𝑣𝑣𝑣𝑣𝑒𝑒𝑎𝑎 

𝑃𝑃%&'67#* = k 0, 𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣 > 0
−𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣, 𝑜𝑜𝑡𝑡ℎ𝑎𝑎𝐶𝐶𝑣𝑣𝑣𝑣𝑒𝑒𝑎𝑎 

 

 

𝑃𝑃ℎ)6(8 = 𝑒𝑒𝑎𝑎𝑎𝑎𝑒𝑒𝑎𝑎(𝑃𝑃ℎ!$"&'(#)*)/65,535 

𝑃𝑃ℎ7#986#% =
1

1 + 𝑎𝑎(;<(=>!"#$;?)) 

 

 

𝑃𝑃%&'67#* = 𝑃𝑃ℎ7#986#% 

𝑃𝑃'#45"' = 1 − 𝑃𝑃%&'67#* 

 

And then taking the average of the four elements in the ‘middle’ of the matrix (which correspond roughly to 
the agent’s current position). Assuming the size of agent view is 30x30 as used here:

∆𝑡𝑡 =
1
30 

 

 

𝓛𝓛 = ∇1(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡	𝑣𝑣𝑣𝑣𝑎𝑎𝑣𝑣) 

 

 

𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣 = gℒ,2,,2 + ℒ,2,,3 + ℒ,3,,2 + ℒ,3,,3i/4 

 

 

𝑚𝑚𝑎𝑎𝑚𝑚 = k𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣, 𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣 > 	𝑚𝑚𝑎𝑎𝑚𝑚
𝑚𝑚𝑎𝑎𝑚𝑚, 𝑜𝑜𝑡𝑡ℎ𝑎𝑎𝐶𝐶𝑣𝑣𝑣𝑣𝑒𝑒𝑎𝑎  

𝑚𝑚𝑣𝑣𝑎𝑎 = k𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣, 𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣 < 	𝑚𝑚𝑣𝑣𝑎𝑎
𝑚𝑚𝑣𝑣𝑎𝑎, 𝑜𝑜𝑡𝑡ℎ𝑎𝑎𝐶𝐶𝑣𝑣𝑣𝑣𝑒𝑒𝑎𝑎  

 

 

𝑃𝑃'#45"' = k𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣, 𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣 > 	0
0, 𝑜𝑜𝑡𝑡ℎ𝑎𝑎𝐶𝐶𝑣𝑣𝑣𝑣𝑒𝑒𝑎𝑎 

𝑃𝑃%&'67#* = k 0, 𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣 > 0
−𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣, 𝑜𝑜𝑡𝑡ℎ𝑎𝑎𝐶𝐶𝑣𝑣𝑣𝑣𝑒𝑒𝑎𝑎 

 

 

𝑃𝑃ℎ)6(8 = 𝑒𝑒𝑎𝑎𝑎𝑎𝑒𝑒𝑎𝑎(𝑃𝑃ℎ!$"&'(#)*)/65,535 

𝑃𝑃ℎ7#986#% =
1

1 + 𝑎𝑎(;<(=>!"#$;?)) 

 

 

𝑃𝑃%&'67#* = 𝑃𝑃ℎ7#986#% 

𝑃𝑃'#45"' = 1 − 𝑃𝑃%&'67#* 

 

Finally, this value is compared to the current max and min values of curvature memory and these are 
updated if necessary:

∆𝑡𝑡 =
1
30 

 

 

𝓛𝓛 = ∇1(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡	𝑣𝑣𝑣𝑣𝑎𝑎𝑣𝑣) 

 

 

𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣 = gℒ,2,,2 + ℒ,2,,3 + ℒ,3,,2 + ℒ,3,,3i/4 

 

 

𝑚𝑚𝑎𝑎𝑚𝑚 = k𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣, 𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣 > 	𝑚𝑚𝑎𝑎𝑚𝑚
𝑚𝑚𝑎𝑎𝑚𝑚, 𝑜𝑜𝑡𝑡ℎ𝑎𝑎𝐶𝐶𝑣𝑣𝑣𝑣𝑒𝑒𝑎𝑎  

𝑚𝑚𝑣𝑣𝑎𝑎 = k𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣, 𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣 < 	𝑚𝑚𝑣𝑣𝑎𝑎
𝑚𝑚𝑣𝑣𝑎𝑎, 𝑜𝑜𝑡𝑡ℎ𝑎𝑎𝐶𝐶𝑣𝑣𝑣𝑣𝑒𝑒𝑎𝑎  

 

 

𝑃𝑃'#45"' = k𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣, 𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣 > 	0
0, 𝑜𝑜𝑡𝑡ℎ𝑎𝑎𝐶𝐶𝑣𝑣𝑣𝑣𝑒𝑒𝑎𝑎 

𝑃𝑃%&'67#* = k 0, 𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣 > 0
−𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣, 𝑜𝑜𝑡𝑡ℎ𝑎𝑎𝐶𝐶𝑣𝑣𝑣𝑣𝑒𝑒𝑎𝑎 

 

 

𝑃𝑃ℎ)6(8 = 𝑒𝑒𝑎𝑎𝑎𝑎𝑒𝑒𝑎𝑎(𝑃𝑃ℎ!$"&'(#)*)/65,535 

𝑃𝑃ℎ7#986#% =
1

1 + 𝑎𝑎(;<(=>!"#$;?)) 

 

 

𝑃𝑃%&'67#* = 𝑃𝑃ℎ7#986#% 

𝑃𝑃'#45"' = 1 − 𝑃𝑃%&'67#* 

 

 8.2.3 Behaviour 2: Level

First, each agent computes the local terrain curvature Curv based on agent view as described in Behaviour 1. 
Then, probabilities Ppickup and Pdeposit are calculated as follows:

∆𝑡𝑡 =
1
30 

 

 

𝓛𝓛 = ∇1(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡	𝑣𝑣𝑣𝑣𝑎𝑎𝑣𝑣) 

 

 

𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣 = gℒ,2,,2 + ℒ,2,,3 + ℒ,3,,2 + ℒ,3,,3i/4 

 

 

𝑚𝑚𝑎𝑎𝑚𝑚 = k𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣, 𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣 > 	𝑚𝑚𝑎𝑎𝑚𝑚
𝑚𝑚𝑎𝑎𝑚𝑚, 𝑜𝑜𝑡𝑡ℎ𝑎𝑎𝐶𝐶𝑣𝑣𝑣𝑣𝑒𝑒𝑎𝑎  

𝑚𝑚𝑣𝑣𝑎𝑎 = k𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣, 𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣 < 	𝑚𝑚𝑣𝑣𝑎𝑎
𝑚𝑚𝑣𝑣𝑎𝑎, 𝑜𝑜𝑡𝑡ℎ𝑎𝑎𝐶𝐶𝑣𝑣𝑣𝑣𝑒𝑒𝑎𝑎  

 

 

𝑃𝑃'#45"' = k𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣, 𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣 > 	0
0, 𝑜𝑜𝑡𝑡ℎ𝑎𝑎𝐶𝐶𝑣𝑣𝑣𝑣𝑒𝑒𝑎𝑎 

𝑃𝑃%&'67#* = k 0, 𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣 > 0
−𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣, 𝑜𝑜𝑡𝑡ℎ𝑎𝑎𝐶𝐶𝑣𝑣𝑣𝑣𝑒𝑒𝑎𝑎 

 

 

𝑃𝑃ℎ)6(8 = 𝑒𝑒𝑎𝑎𝑎𝑎𝑒𝑒𝑎𝑎(𝑃𝑃ℎ!$"&'(#)*)/65,535 

𝑃𝑃ℎ7#986#% =
1

1 + 𝑎𝑎(;<(=>!"#$;?)) 

 

 

𝑃𝑃%&'67#* = 𝑃𝑃ℎ7#986#% 

𝑃𝑃'#45"' = 1 − 𝑃𝑃%&'67#* 
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∆𝑡𝑡 =
1
30 

 

 

𝓛𝓛 = ∇1(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡	𝑣𝑣𝑣𝑣𝑎𝑎𝑣𝑣) 

 

 

𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣 = gℒ,2,,2 + ℒ,2,,3 + ℒ,3,,2 + ℒ,3,,3i/4 

 

 

𝑚𝑚𝑎𝑎𝑚𝑚 = k𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣, 𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣 > 	𝑚𝑚𝑎𝑎𝑚𝑚
𝑚𝑚𝑎𝑎𝑚𝑚, 𝑜𝑜𝑡𝑡ℎ𝑎𝑎𝐶𝐶𝑣𝑣𝑣𝑣𝑒𝑒𝑎𝑎  

𝑚𝑚𝑣𝑣𝑎𝑎 = k𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣, 𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣 < 	𝑚𝑚𝑣𝑣𝑎𝑎
𝑚𝑚𝑣𝑣𝑎𝑎, 𝑜𝑜𝑡𝑡ℎ𝑎𝑎𝐶𝐶𝑣𝑣𝑣𝑣𝑒𝑒𝑎𝑎  

 

 

𝑃𝑃'#45"' = k𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣, 𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣 > 	0
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 8.2.4 Behaviour 3: Global 

Each agent senses the value of blueprint pheromone at its current location and normalises it to the 
range [0 → 1] by dividing by the maximum possible pheromone value of 65,535. This value is then passed 
through a sigmoid function:

∆𝑡𝑡 =
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𝓛𝓛 = ∇1(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡	𝑣𝑣𝑣𝑣𝑎𝑎𝑣𝑣) 

 

 

𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣 = gℒ,2,,2 + ℒ,2,,3 + ℒ,3,,2 + ℒ,3,,3i/4 

 

 

𝑚𝑚𝑎𝑎𝑚𝑚 = k𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣, 𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣 > 	𝑚𝑚𝑎𝑎𝑚𝑚
𝑚𝑚𝑎𝑎𝑚𝑚, 𝑜𝑜𝑡𝑡ℎ𝑎𝑎𝐶𝐶𝑣𝑣𝑣𝑣𝑒𝑒𝑎𝑎  

𝑚𝑚𝑣𝑣𝑎𝑎 = k𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣, 𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣 < 	𝑚𝑚𝑣𝑣𝑎𝑎
𝑚𝑚𝑣𝑣𝑎𝑎, 𝑜𝑜𝑡𝑡ℎ𝑎𝑎𝐶𝐶𝑣𝑣𝑣𝑣𝑒𝑒𝑎𝑎  

 

 

𝑃𝑃'#45"' = k𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣, 𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣 > 	0
0, 𝑜𝑜𝑡𝑡ℎ𝑎𝑎𝐶𝐶𝑣𝑣𝑣𝑣𝑒𝑒𝑎𝑎 

𝑃𝑃%&'67#* = k 0, 𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣 > 0
−𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣, 𝑜𝑜𝑡𝑡ℎ𝑎𝑎𝐶𝐶𝑣𝑣𝑣𝑣𝑒𝑒𝑎𝑎 

 

 

𝑃𝑃ℎ)6(8 = 𝑒𝑒𝑎𝑎𝑎𝑎𝑒𝑒𝑎𝑎(𝑃𝑃ℎ!$"&'(#)*)/65,535 

𝑃𝑃ℎ7#986#% =
1

1 + 𝑎𝑎(;<(=>!"#$;?)) 

 

 

𝑃𝑃%&'67#* = 𝑃𝑃ℎ7#986#% 

𝑃𝑃'#45"' = 1 − 𝑃𝑃%&'67#* 

 

Where values of σ=50 and μ=0.4 are used here. Finally, the probabilities Ppickup and Pdeposit are 
calculated as follows:

∆𝑡𝑡 =
1
30 

 

 

𝓛𝓛 = ∇1(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡	𝑣𝑣𝑣𝑣𝑎𝑎𝑣𝑣) 

 

 

𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣 = gℒ,2,,2 + ℒ,2,,3 + ℒ,3,,2 + ℒ,3,,3i/4 

 

 

𝑚𝑚𝑎𝑎𝑚𝑚 = k𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣, 𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣 > 	𝑚𝑚𝑎𝑎𝑚𝑚
𝑚𝑚𝑎𝑎𝑚𝑚, 𝑜𝑜𝑡𝑡ℎ𝑎𝑎𝐶𝐶𝑣𝑣𝑣𝑣𝑒𝑒𝑎𝑎  

𝑚𝑚𝑣𝑣𝑎𝑎 = k𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣, 𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣 < 	𝑚𝑚𝑣𝑣𝑎𝑎
𝑚𝑚𝑣𝑣𝑎𝑎, 𝑜𝑜𝑡𝑡ℎ𝑎𝑎𝐶𝐶𝑣𝑣𝑣𝑣𝑒𝑒𝑎𝑎  

 

 

𝑃𝑃'#45"' = k𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣, 𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣 > 	0
0, 𝑜𝑜𝑡𝑡ℎ𝑎𝑎𝐶𝐶𝑣𝑣𝑣𝑣𝑒𝑒𝑎𝑎 

𝑃𝑃%&'67#* = k 0, 𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣 > 0
−𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣, 𝑜𝑜𝑡𝑡ℎ𝑎𝑎𝐶𝐶𝑣𝑣𝑣𝑣𝑒𝑒𝑎𝑎 

 

 

𝑃𝑃ℎ)6(8 = 𝑒𝑒𝑎𝑎𝑎𝑎𝑒𝑒𝑎𝑎(𝑃𝑃ℎ!$"&'(#)*)/65,535 

𝑃𝑃ℎ7#986#% =
1

1 + 𝑎𝑎(;<(=>!"#$;?)) 

 

 

𝑃𝑃%&'67#* = 𝑃𝑃ℎ7#986#% 

𝑃𝑃'#45"' = 1 − 𝑃𝑃%&'67#* 

 

 8.2.5 Behaviour 4: Local

Each agent samples a local portion of terrain map, centred on its current location (x, y) to obtain agent 
view which is an MxN (30x30) matrix. It then creates two copies of this matrix, which are modified by 
performing a pickup and deposit in exactly the same way as is done when modifying terrain map. This yields 
two additional matrices pickup view and deposit view. Each of these three matrices becomes a sample for 
comparison with the user-generated view template. This is achieved using forward and inverse Fast Fourier 
Transforms from the numpy.fft library as follows:

 

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑡𝑡2(𝑣𝑣𝑣𝑣𝑡𝑡𝑣𝑣	𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) 

𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑡𝑡2(𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑣𝑣𝑐𝑐𝑐𝑐 = 𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡2(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) ∗ 𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) 

𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐ℎ = max	(𝑡𝑡𝑎𝑎𝑠𝑠(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑣𝑣𝑐𝑐𝑐𝑐)) 

 

 

𝑃𝑃'#45"' = W1, 𝑡𝑡𝑣𝑣𝑐𝑐𝑝𝑝𝑐𝑐𝑡𝑡	𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐ℎ > 𝑑𝑑𝑡𝑡𝑡𝑡𝑐𝑐𝑠𝑠𝑣𝑣𝑡𝑡	𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐ℎ	𝐴𝐴𝐴𝐴𝐴𝐴	𝑡𝑡𝑣𝑣𝑐𝑐𝑝𝑝𝑐𝑐𝑡𝑡	𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐ℎ > 𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐ℎ
0, 𝑐𝑐𝑡𝑡ℎ𝑡𝑡𝑐𝑐𝑣𝑣𝑣𝑣𝑠𝑠𝑡𝑡  

𝑃𝑃%&'67#* = W1, 𝑑𝑑𝑡𝑡𝑡𝑡𝑐𝑐𝑠𝑠𝑣𝑣𝑡𝑡	𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐ℎ > 𝑡𝑡𝑣𝑣𝑐𝑐𝑝𝑝𝑐𝑐𝑡𝑡	𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐ℎ	𝐴𝐴𝐴𝐴𝐴𝐴	𝑑𝑑𝑡𝑡𝑡𝑡𝑐𝑐𝑠𝑠𝑣𝑣𝑡𝑡	𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐ℎ > 𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐ℎ
0, 𝑐𝑐𝑡𝑡ℎ𝑡𝑡𝑐𝑐𝑣𝑣𝑣𝑣𝑠𝑠𝑡𝑡  

 

 

𝑃𝑃'#45"' = W2 × (𝐶𝐶𝑐𝑐𝑐𝑐𝑣𝑣 − 1.1 × 𝑡𝑡𝑡𝑡𝑚𝑚), 𝐶𝐶𝑐𝑐𝑐𝑐𝑣𝑣 > 	1.1 × 𝑡𝑡𝑡𝑡𝑚𝑚
0, 𝑐𝑐𝑡𝑡ℎ𝑡𝑡𝑐𝑐𝑣𝑣𝑣𝑣𝑠𝑠𝑡𝑡  

𝑃𝑃%&'67#* = W−2 × (𝐶𝐶𝑐𝑐𝑐𝑐𝑣𝑣 − 1.1 × 𝑡𝑡𝑡𝑡𝑚𝑚), 𝐶𝐶𝑐𝑐𝑐𝑐𝑣𝑣 < 1.1 × 𝑡𝑡𝑣𝑣𝑐𝑐
0, 𝑐𝑐𝑡𝑡ℎ𝑡𝑡𝑐𝑐𝑣𝑣𝑣𝑣𝑠𝑠𝑡𝑡  
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Note that the match is quantified based on the maximum absolute value within the correlation matrix, 
which makes the process insensitive to any spatial offset between the sample and template as desired. 
After doing this for agent view, pickup view and deposit view to obtain match, pickup match and deposit 
match, the probabilities are calculated as follows:

 

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑡𝑡2(𝑣𝑣𝑣𝑣𝑡𝑡𝑣𝑣	𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) 

𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑡𝑡2(𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑣𝑣𝑐𝑐𝑐𝑐 = 𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡2(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) ∗ 𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) 

𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐ℎ = max	(𝑡𝑡𝑎𝑎𝑠𝑠(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑣𝑣𝑐𝑐𝑐𝑐)) 

 

 

𝑃𝑃'#45"' = W1, 𝑡𝑡𝑣𝑣𝑐𝑐𝑝𝑝𝑐𝑐𝑡𝑡	𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐ℎ > 𝑑𝑑𝑡𝑡𝑡𝑡𝑐𝑐𝑠𝑠𝑣𝑣𝑡𝑡	𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐ℎ	𝐴𝐴𝐴𝐴𝐴𝐴	𝑡𝑡𝑣𝑣𝑐𝑐𝑝𝑝𝑐𝑐𝑡𝑡	𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐ℎ > 𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐ℎ
0, 𝑐𝑐𝑡𝑡ℎ𝑡𝑡𝑐𝑐𝑣𝑣𝑣𝑣𝑠𝑠𝑡𝑡  

𝑃𝑃%&'67#* = W1, 𝑑𝑑𝑡𝑡𝑡𝑡𝑐𝑐𝑠𝑠𝑣𝑣𝑡𝑡	𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐ℎ > 𝑡𝑡𝑣𝑣𝑐𝑐𝑝𝑝𝑐𝑐𝑡𝑡	𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐ℎ	𝐴𝐴𝐴𝐴𝐴𝐴	𝑑𝑑𝑡𝑡𝑡𝑡𝑐𝑐𝑠𝑠𝑣𝑣𝑡𝑡	𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐ℎ > 𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐ℎ
0, 𝑐𝑐𝑡𝑡ℎ𝑡𝑡𝑐𝑐𝑣𝑣𝑣𝑣𝑠𝑠𝑡𝑡  

 

 

𝑃𝑃'#45"' = W2 × (𝐶𝐶𝑐𝑐𝑐𝑐𝑣𝑣 − 1.1 × 𝑡𝑡𝑡𝑡𝑚𝑚), 𝐶𝐶𝑐𝑐𝑐𝑐𝑣𝑣 > 	1.1 × 𝑡𝑡𝑡𝑡𝑚𝑚
0, 𝑐𝑐𝑡𝑡ℎ𝑡𝑡𝑐𝑐𝑣𝑣𝑣𝑣𝑠𝑠𝑡𝑡  

𝑃𝑃%&'67#* = W−2 × (𝐶𝐶𝑐𝑐𝑐𝑐𝑣𝑣 − 1.1 × 𝑡𝑡𝑡𝑡𝑚𝑚), 𝐶𝐶𝑐𝑐𝑐𝑐𝑣𝑣 < 1.1 × 𝑡𝑡𝑣𝑣𝑐𝑐
0, 𝑐𝑐𝑡𝑡ℎ𝑡𝑡𝑐𝑐𝑣𝑣𝑣𝑣𝑠𝑠𝑡𝑡  

 

 

 8.2.6 Behaviour 5: Repair

Each agent computes the local terrain curvature Curv as per the method described in Behaviour 1, and 
compares this to the max and min curvatures learned while executing Behaviour 1. The probabilities Ppickup 
and Pdeposit are calculated as follows:

 

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑡𝑡2(𝑣𝑣𝑣𝑣𝑡𝑡𝑣𝑣	𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) 

𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑡𝑡2(𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑣𝑣𝑐𝑐𝑐𝑐 = 𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡2(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) ∗ 𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) 

𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐ℎ = max	(𝑡𝑡𝑎𝑎𝑠𝑠(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑣𝑣𝑐𝑐𝑐𝑐)) 

 

 

𝑃𝑃'#45"' = W1, 𝑡𝑡𝑣𝑣𝑐𝑐𝑝𝑝𝑐𝑐𝑡𝑡	𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐ℎ > 𝑑𝑑𝑡𝑡𝑡𝑡𝑐𝑐𝑠𝑠𝑣𝑣𝑡𝑡	𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐ℎ	𝐴𝐴𝐴𝐴𝐴𝐴	𝑡𝑡𝑣𝑣𝑐𝑐𝑝𝑝𝑐𝑐𝑡𝑡	𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐ℎ > 𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐ℎ
0, 𝑐𝑐𝑡𝑡ℎ𝑡𝑡𝑐𝑐𝑣𝑣𝑣𝑣𝑠𝑠𝑡𝑡  

𝑃𝑃%&'67#* = W1, 𝑑𝑑𝑡𝑡𝑡𝑡𝑐𝑐𝑠𝑠𝑣𝑣𝑡𝑡	𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐ℎ > 𝑡𝑡𝑣𝑣𝑐𝑐𝑝𝑝𝑐𝑐𝑡𝑡	𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐ℎ	𝐴𝐴𝐴𝐴𝐴𝐴	𝑑𝑑𝑡𝑡𝑡𝑡𝑐𝑐𝑠𝑠𝑣𝑣𝑡𝑡	𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐ℎ > 𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐ℎ
0, 𝑐𝑐𝑡𝑡ℎ𝑡𝑡𝑐𝑐𝑣𝑣𝑣𝑣𝑠𝑠𝑡𝑡  

 

 

𝑃𝑃'#45"' = W2 × (𝐶𝐶𝑐𝑐𝑐𝑐𝑣𝑣 − 1.1 × 𝑡𝑡𝑡𝑡𝑚𝑚), 𝐶𝐶𝑐𝑐𝑐𝑐𝑣𝑣 > 	1.1 × 𝑡𝑡𝑡𝑡𝑚𝑚
0, 𝑐𝑐𝑡𝑡ℎ𝑡𝑡𝑐𝑐𝑣𝑣𝑣𝑣𝑠𝑠𝑡𝑡  

𝑃𝑃%&'67#* = W−2 × (𝐶𝐶𝑐𝑐𝑐𝑐𝑣𝑣 − 1.1 × 𝑡𝑡𝑡𝑡𝑚𝑚), 𝐶𝐶𝑐𝑐𝑐𝑐𝑣𝑣 < 1.1 × 𝑡𝑡𝑣𝑣𝑐𝑐
0, 𝑐𝑐𝑡𝑡ℎ𝑡𝑡𝑐𝑐𝑣𝑣𝑣𝑣𝑠𝑠𝑡𝑡  

 

 

User Interface

Upon launching the program, a pre-simulation menu is displayed which allows for the creation or loading 
of Global (for Behaviour 3), Local (for Behaviour 4) and Terrain (for template-based world initialisation) 
templates, as well as selection of some initial conditions. 

Once choices are confirmed, the main screen appears, with the simulation initially paused to allow the user 
to change settings before agents start moving. This screen is subdivided into four windows: Top left shows 
the agents (they can be hidden to see the terrain better) and current terrain map; Bottom left (separate for 
visual clarity) shows the current pheromone map (build pheromone: Red, blueprint pheromone: Blue, terrain 
pheromone, Green). Top right shows the FPS currently being achieved (this is capped at the target of 30FPS) 
and simulation time, along with user instructions and some agent status information. Bottom right shows a 
grid of the agent view for all agents (if a behaviour that uses these is active).
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