Downloads
DOI:
https://doi.org/10.7480/spool.2021.2.5258Keywords:
In-Situ Resource Utilization (ISRU), Regolith, Functionally Graded Materials (FGM), Additive Manufacturing (AM), Digital Light Processing (DLP), Spark Plasma Sintering (SPS)Abstract
This study investigates the feasibility of in-situ manufacturing of a functionally graded metallic-regolith. To fabricate the gradient, digital light processing, an additive manufacturing technique, and spark plasma sintering were selected due to their compatibility with metallic-ceramic processing in a space environment. The chosen methods were first assessed for their ability to effectively consolidate regolith alone, before progressing to sintering regolith directly onto metallic substrates. Optimized processing conditions based on the sintering temperature, initial powder particle size, and different compositions of the lunar regolith powders were identified. Experiments have successfully proven the consolidation of lunar regolith simulants at 1050°C under 80 MPa with digital light processing and spark plasma sintering, while the metallic powders can be fully densified at relatively low temperatures and a pressure of 50 MPa with spark plasma sintering. Furthermore, the lunar regolith and Ti6Al4V gradient was proven to be the most promising combination. While the current study showed that it is feasible to manufacture a functionally graded metallic-regolith, further developments of a fully optimized method have the potential to produce tailored, high-performance materials in an off-earth manufacturing setting for the production of aerospace, robotic, or architectural components.
How to Cite
Published
Issue
Section
Categories
License
Copyright (c) 2021 Mathilde Laot, Belinda Rich, Ina Cheibas, Jia Fu, Jia-Ning Zhu, Vera A. Popovich
This work is licensed under a Creative Commons Attribution 4.0 International License.
Plaudit
References
AGOSTO, W. (1981, May). BENEFICIATION AND POWDER METALLURGICAL PROCESSING OF LUNAR SOIL METAL. 4th Space Manufacturing; Proceedings of the Fifth Conference. https://doi.org/10.2514/6.1981-3263
Allen, C. C., Morris, R. V., & McKay, D. S. (1996). Oxygen extraction from lunar soils and pyroclastic glass. Journal of Geophysical Research: Planets, 101(E11), 26085–26095. https://doi.org/10.1029/96je02726
Altun, A. A., Ertl, F., Marechal, M., Makaya, A., Sgambati, A., & Schwentenwein, M. (2021). Additive manufacturing of lunar regolith structures. Open Ceramics, 5, 100058. https://doi.org/10.1016/j.oceram.2021.100058
Balla, V. K., Bandyopadhyay, P. P., Bose, S., & Bandyopadhyay, A. (2007). Compositionally graded yttria-stabilized zirconia coating on stainless steel using laser engineered net shaping (LENSTM). Scripta Materialia, 57(9), 861–864. https://doi.org/10.1016/j.scriptamat.2007.06.055
Balla, V. K., Roberson, L. B., O’Connor, G. W., Trigwell, S., Bose, S., & Bandyopadhyay, A. (2012). First demonstration on direct laser fabrication of lunar regolith parts. Rapid Prototyping Journal, 18(6), 451–457. https://doi.org/10.1108/13552541211271992
Benaroya, H. (2018). Building Habitats on the Moon: Engineering Approaches to Lunar Settlements (Springer Praxis Books) (1st ed.). Springer.
Bever, M., & Duwez, P. (1972). Gradients in composite materials. Materials Science and Engineering, 10, 1–8. https://doi.org/10.1016/0025-5416(72)90059-6
Brown, G. M., Peckett, A., Emeleus, C. H., Phillips, R., & Pinsent, R. H. (1975). Petrology and mineralogy of Apollo 17 mare basalts. 1–13.
Cannon, K. (n.d.-a). LHS-1 Lunar Highlands Simulant. Planetary Simulant Database. Retrieved November 25, 2020, from https://simulantdb.com/simulants/lhs1.php
Cannon, K. (n.d.-b). LMS-1 Lunar Mare Simulant. Planetary Simulant Database. Retrieved November 25, 2020, from https://simulantdb.com/simulants/lms1.php
Cesaretti, G., Dini, E., De Kestelier, X., Colla, V., & Pambaguian, L. (2014). Building components for an outpost on the Lunar soil by means of a novel 3D printing technology. Acta Astronautica, 93, 430–450. https://doi.org/10.1016/j.actaastro.2013.07.034
Cheibas, I., Laot, M., Popovich, V. A., Rich, B., & Castillo, S. R. (2020). Additive Manufacturing of Functionally Graded Materials with In-Situ Resources. Aerospace Europe Conference, Bordeaux, France.
Cheng, Y., Cui, Z., Cheng, L., Gong, D., & Wang, W. (2017). Effect of particle size on densification of pure magnesium during spark plasma sintering. Advanced Powder Technology, 28(4), 1129–1135. https://doi.org/10.1016/j.apt.2017.01.017
Chua, C. K., Wong, C. H., & Yeong, W. Y. (2017). Standards, Quality Control, and Measurement Sciences in 3D Printing and Additive Manufacturing. Academic Press.
CLASS Exolith Lab. (n.d.-a). Center for Lunar & Asteroid Surface Science. Retrieved November 6, 2020, from https://sciences.ucf.edu/class/exolithlab/
CLASS Exolith Lab. (n.d.-b). LHS-1 Lunar Highlands Simulant Fact Sheet. Exolith Lab. Retrieved November 6, 2020, from https://exolithsimulants.com/collections/regolith-simulants/products/lhs-1-lunar-highlands-simulant
CLASS Exolith Lab. (n.d.-c). LMS-1 Lunar Mare Simulant Fact Sheet. Exolith Lab. Retrieved November 6, 2020, from https://exolithsimulants.com/collections/regolith-simulants/products/lms-1-lunar-mare-simulant
Crosby, K., Shaw, L. L., Estournes, C., Chevallier, G., Fliflet, A. W., & Imam, M. A. (2014). Enhancement in Ti–6Al–4V sintering via nanostructured powder and spark plasma sintering. Powder Metallurgy, 57(2), 147–154. https://doi.org/10.1179/1743290113y.0000000082
Dordlofva, C., & Törlind, P. (Eds.). (2017). Qualification Challenges with Additive Manufacturing in Space Applications. .
Eckart, P. (1999). The Lunar Base Handbook (Space Technology Series) (1st ed.). McGraw-Hill Primis Custom Publishing.
Edmunson, J., & Rickman, D. L. (2012). A Survey of Geologic Resources. In V. Badescu (Ed.), Moon (pp. 1–21). Springer. https://doi.org/10.1007/978-3-642-27969-0_1
Engelschiøn, V. S., Eriksson, S. R., Cowley, A., Fateri, M., Meurisse, A., Kueppers, U., & Sperl, M. (2020). EAC-1A: A novel large-volume lunar regolith simulant. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-62312-4
F42 Committee. (n.d.). Terminology for Additive Manufacturing Technologies. ASTM International. https://doi.org/10.1520/F2792-12A
Fateri, M., Meurisse, A., Sperl, M., Urbina, D., Madakashira, H. K., Govindaraj, S., Gancet, J., Imhof, B., Hoheneder, W., Waclavicek, R., Preisinger, C., Podreka, E., Mohamed, M. P., & Weiss, P. (2019). Solar Sintering for Lunar Additive Manufacturing. Journal of Aerospace Engineering, 32(6), 04019101. https://doi.org/10.1061/(asce)as.1943-5525.0001093
Fateri, M., Pitikaris, S., & Sperl, M. (2019). Investigation on Wetting and Melting Behavior of Lunar Regolith Simulant for Additive Manufacturing Application. Microgravity Science and Technology, 31(2), 161–167. https://doi.org/10.1007/s12217-019-9674-5
Frank, J., Spirkovska, L., McCann, R., Lui Wang, Pohlkamp, K., & Morin, L. (2013). Autonomous mission operations. 2013 IEEE Aerospace Conference, 1–20. https://doi.org/10.1109/aero.2013.6496927
Gong, F., Zhao, J., Li, Z., Sun, J., Ni, X., & Hou, G. (2018). Design, fabrication and mechanical properties of multidimensional graded ceramic tool materials. Ceramics International, 44(3), 2941–2951. https://doi.org/10.1016/j.ceramint.2017.11.046
Goulas, A., Binner, J. G., Engstrøm, D. S., Harris, R. A., & Friel, R. J. (2018). Mechanical behaviour of additively manufactured lunar regolith simulant components. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 233(8), 1629–1644. https://doi.org/10.1177/1464420718777932
Goulas, A., Binner, J. G., Harris, R. A., & Friel, R. J. (2017). Assessing extraterrestrial regolith material simulants for in-situ resource utilisation based 3D printing. Applied Materials Today, 6, 54–61. https://doi.org/10.1016/j.apmt.2016.11.004
Goulas, A., & Friel, R. J. (2016). 3D printing with moondust. Rapid Prototyping Journal, 22(6), 864–870. https://doi.org/10.1108/rpj-02-2015-0022
Howe, A. S., & Sherwood, B. (2009). Out of this world: The new field of space architecture. American Institute of Aeronautics & Astronautics.
Jin, Q., Ren, X. P., Hou, H. L., Zhang, Y. L., & Qu, H. T. (2018). In Situ Synthesis and Structural Design of Ti/TiC Functionally Graded Materials. Materials Science Forum, 913, 515–521. https://doi.org/10.4028/www.scientific.net/msf.913.515
Kamaruzaman, F. F., Nuruzzaman, D. M., Ismail, N. M., Hamedon, Z., Iqbal, A. K. M. A., & Azhari, A. (2018). Microstructure and properties of aluminium-aluminium oxide graded composite materials. IOP Conference Series: Materials Science and Engineering, 319, 012046. https://doi.org/10.1088/1757-899x/319/1/012046
Karami, K., Blok, A., Weber, L., Ahmadi, S. M., Petrov, R., Nikolic, K., Borisov, E. V., Leeflang, S., Ayas, C., Zadpoor, A. A., Mehdipour, M., Reinton, E., & Popovich, V. A. (2020). Continuous and pulsed selective laser melting of Ti6Al4V lattice structures: Effect of post-processing on microstructural anisotropy and fatigue behaviour. Additive Manufacturing, 36, 101433. https://doi.org/10.1016/j.addma.2020.101433
Katz-Demyanetz, A., Popov, V. V., Kovalevsky, A., Safranchik, D., & Koptyug, A. (2019). Powder-bed additive manufacturing for aerospace application: Techniques, metallic and metal/ceramic composite materials and trends. Manufacturing Review, 6, 5. https://doi.org/10.1051/mfreview/2019003
Keller, C., Tabalaiev, K., Marnier, G., Noudem, J., Sauvage, X., & Hug, E. (2016). Influence of spark plasma sintering conditions on the sintering and functional properties of an ultra-fine grained 316L stainless steel obtained from ball-milled powder. Materials Science and Engineering: A, 665, 125–134. https://doi.org/10.1016/j.msea.2016.04.039
Kennedy, K. (2002). The Vernacular of Space Architecture. AIAA Space Architecture Symposium. https://doi.org/10.2514/6.2002-6102
Khoshnevis, B., Bodiford, M., Burks, K., Ethridge, E., Tucker, D., Kim, W., Toutanji, H., & Fiske, M. (2005). Lunar Contour Crafting - A Novel Technique for ISRU-Based Habitat Development. 43rd AIAA Aerospace Sciences Meeting and Exhibit. https://doi.org/10.2514/6.2005-538
Kim, B.-H., & Na, Y.-H. (1995). Fabrication of fiber-reinforced porous ceramics of Al2O3-mullite and SiC-mullite systems. Ceramics International, 21(6), 381–384. https://doi.org/10.1016/0272-8842(95)94461-i
Labeaga-Martínez, N., Sanjurjo-Rivo, M., Díaz-Álvarez, J., & Martínez-Frías, J. (2017). Additive manufacturing for a Moon village. Procedia Manufacturing, 13, 794–801. https://doi.org/10.1016/j.promfg.2017.09.186
Landis, G. A. (2007). Materials refining on the Moon. Acta Astronautica, 60(10–11), 906–915. https://doi.org/10.1016/j.actaastro.2006.11.004
Liu, M., Tang, W., Duan, W., Li, S., Dou, R., Wang, G., Liu, B., & Wang, L. (2019). Digital light processing of lunar regolith structures with high mechanical properties. Ceramics International, 45(5), 5829–5836. https://doi.org/10.1016/j.ceramint.2018.12.049
Long, Y., Zhang, H., Wang, T., Huang, X., Li, Y., Wu, J., & Chen, H. (2013). High-strength Ti–6Al–4V with ultrafine-grained structure fabricated by high energy ball milling and spark plasma sintering. Materials Science and Engineering: A, 585, 408–414. https://doi.org/10.1016/j.msea.2013.07.078
Manick, K., Gill, S.-J., Rumsey, M. S., Smith, C. L., Duvet, L., Miller, C. G., & Jones, C. (2018, March). The European Space Agency Exploration Sample Analogue Collection (Esa2c) And Curation Facility – Present And Future [Paper presentation]. 49th Lunar and Planetary Science Conference, The Woodlands, Texas.
Marnier, G., Keller, C., Noudem, J., & Hug, E. (2014). Functional properties of a spark plasma sintered ultrafine-grained 316L steel. Materials & Design, 63, 633–640. https://doi.org/10.1016/j.matdes.2014.06.053
Maseko, S. W., Popoola, A. P. I., & Fayomi, O. S. I. (2018). Characterization of ceramic reinforced titanium matrix composites fabricated by spark plasma sintering for anti-ballistic applications. Defence Technology, 14(5), 408–411. https://doi.org/10.1016/j.dt.2018.04.013
Mertens, A. I., Reginster, S., Paydas, H., Contrepois, Q., Dormal, T., Lemaire, O., & Lecomte-Beckers, J. (2014). Mechanical properties of alloy Ti–6Al–4V and of stainless steel 316L processed by selective laser melting: influence of out-of-equilibrium microstructures. Powder Metallurgy, 57(3), 184–189. https://doi.org/10.1179/1743290114y.0000000092
Meurisse, A., Beltzung, J. C., Kolbe, M., Cowley, A., & Sperl, M. (2017). Influence of Mineral Composition on Sintering Lunar Regolith. Journal of Aerospace Engineering, 30(4), 04017014. https://doi.org/10.1061/(asce)as.1943-5525.0000721
Meurisse, A., Makaya, A., Willsch, C., & Sperl, M. (2018). Solar 3D printing of lunar regolith. Acta Astronautica, 152, 800–810. https://doi.org/10.1016/j.actaastro.2018.06.063
Mueller, S., Taylor, G. J., & Phillips, R. J. (1988). Lunar composition: A geophysical and petrological synthesis. Journal of Geophysical Research, 93(B6). https://doi.org/10.1029/jb093ib06p06338
Munir, Z. A., Anselmi-Tamburini, U., & Ohyanagi, M. (2006). The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. Journal of Materials Science, 41(3), 763–777. https://doi.org/10.1007/s10853-006-6555-2
Naser, M. Z., & Chehab, A. I. (2018). Materials and design concepts for space-resilient structures. Progress in Aerospace Sciences, 98, 74–90. https://doi.org/10.1016/j.paerosci.2018.03.004
Neves, J. M., Ramanathan, S., Suraneni, P., Grugel, R., & Radlińska, A. (2020). Characterization, mechanical properties, and microstructural development of lunar regolith simulant-portland cement blended mixtures. Construction and Building Materials, 258, 120315. https://doi.org/10.1016/j.conbuildmat.2020.120315
Obadele, B. A., Adesina, O. S., Oladijo, O. P., & Ogunmuyiwa, E. N. (2020). Fabrication of functionally graded 316L austenitic and 2205 duplex stainless steels by spark plasma sintering. Journal of Alloys and Compounds, 849, 156697. https://doi.org/10.1016/j.jallcom.2020.156697
Papike, J. J., Simon, S. B., & Laul, J. C. (1982). The lunar regolith: Chemistry, mineralogy, and petrology. Reviews of Geophysics, 20(4), 761. https://doi.org/10.1029/rg020i004p00761
Pieters, C. M. (1986). Composition of the lunar highland crust from near-infrared spectroscopy. Reviews of Geophysics, 24(3). https://doi.org/10.1029/rg024i003p00557
Pilehvar, S., Arnhof, M., Pamies, R., Valentini, L., & Kjøniksen, A. L. (2020). Utilization of urea as an accessible superplasticizer on the moon for lunar geopolymer mixtures. Journal of Cleaner Production, 247, 119177. https://doi.org/10.1016/j.jclepro.2019.119177
Poondla, N., Srivatsan, T. S., Patnaik, A., & Petraroli, M. (2009). A study of the microstructure and hardness of two titanium alloys: Commercially pure and Ti–6Al–4V. Journal of Alloys and Compounds, 486(1–2), 162–167. https://doi.org/10.1016/j.jallcom.2009.06.172
Popovich, V. A., Borisov, E. V., Heurtebise, V., Riemslag, T., Popovich, A. A., & Sufiiarov, V. S. (2018). Creep and Thermomechanical Fatigue of Functionally Graded Inconel 718 Produced by Additive Manufacturing. TMS 2018 147th Annual Meeting & Exhibition Supplemental Proceedings, 85–97. https://doi.org/10.1007/978-3-319-72526-0_9
Prettyman, T. H., Hagerty, J. J., Elphic, R. C., Feldman, W. C., Lawrence, D. J., McKinney, G. W., & Vaniman, D. T. (2006). Elemental composition of the lunar surface: Analysis of gamma ray spectroscopy data from Lunar Prospector. Journal of Geophysical Research: Planets, 111(E12). https://doi.org/10.1029/2005je002656
Radhamani, A. V., Lau, H. C., Kamaraj, M., & Ramakrishna, S. (2020). Structural, mechanical and tribological investigations of CNT-316 stainless steel nanocomposites processed via spark plasma sintering. Tribology International, 152, 106524. https://doi.org/10.1016/j.triboint.2020.106524
Rajan, T. P. D., & Pai, B. C. (2014). Developments in Processing of Functionally Gradient Metals and Metal–Ceramic Composites: A Review. Acta Metallurgica Sinica (English Letters), 27(5), 825–838. https://doi.org/10.1007/s40195-014-0142-3
Rattanachan, S., Miyashita, Y., & Mutoh, Y. (2003). Microstructure and fracture toughness of a spark plasma sintered Al2O3-based composite with BaTiO3 particulates. Journal of the European Ceramic Society, 23(8), 1269–1276. https://doi.org/10.1016/s0955-2219(02)00294-7
Ray, C. S., Reis, S. T., Sen, S., & O’Dell, J. S. (2010). JSC-1A lunar soil simulant: Characterization, glass formation, and selected glass properties. Journal of Non-Crystalline Solids, 356(44–49), 2369–2374. https://doi.org/10.1016/j.jnoncrysol.2010.04.049
Restivo, T. A. G., Beccari, R. F., Padilha, W. R., Durazzo, M., Telles, V. B., Coleti, J., Yamagata, C., Silva, A. C. D., Suzuki, E., Soares Tenório, J. A. S., & Mello-Castanho, S. R. H. (2019). Micrograded ceramic-metal composites. Journal of the European Ceramic Society, 39(12), 3484–3490. https://doi.org/10.1016/j.jeurceramsoc.2019.03.018
Ruys, A. J., Popov, E. B., Sun, D., Russell, J. J., & Murray, C. C. J. (2001). Functionally graded electrical/thermal ceramic systems. Journal of the European Ceramic Society, 21(10–11), 2025–2029. https://doi.org/10.1016/s0955-2219(01)00165-0
Sanders, G. B., Romig, K. A., Larson, W. E., Johnson, R., Rapp, D., Johnson, K. R., Sacksteder, K., Linne, D., Curreri, P., Duke, M., Blair, B., Gertsch, L., Boucher, D., Rice, E., Clark, L., McCullough, E., & Zubrin, R. (2005). Results from the NASA Capability Roadmap Team for In-Situ Resource Utilization (ISRU). International Lunar Conference.
Schleppi, J., Gibbons, J., Groetsch, A., Buckman, J., Cowley, A., & Bennett, N. (2018). Manufacture of glass and mirrors from lunar regolith simulant. Journal of Materials Science, 54(5), 3726–3747. https://doi.org/10.1007/s10853-018-3101-y
Shiwei, N., Dritsas, S., & Fernandez, J. G. (2020). Martian biolith: A bioinspired regolith composite for closed-loop extraterrestrial manufacturing. PLOS ONE, 15(9), e0238606. https://doi.org/10.1371/journal.pone.0238606
Sibille, L., Carpenter, P., Systems, B., Schlagheck, R., & French, R. A. (2006, September). Lunar Regolith Simulant Materials: Recommendations for Standardization, Production, and Usage (NASA/TP—2006-214605). George C. Marshall Space Flight Center.
Srivastava, M., Rathee, S., Maheshwari, S., & Kundra, T. K. (2019). Design and processing of functionally graded material: review and current status of research. In L. Kumar, P. Pandey, & D. Wimpenny (Eds.), 3D Printing and additive manufacturing technologies (pp. 243–255). Springer, Singapore
Suresh, S., & Mortensen, A. (1997). Functionally graded metals and metal-ceramic composites: Part 2 Thermomechanical behaviour. International Materials Reviews, 42(3), 85–116. https://doi.org/10.1179/imr.1997.42.3.85
Taylor, S. R. (1987). The unique lunar composition and its bearing on the origin of the Moon. Geochimica et Cosmochimica Acta, 51(5). https://doi.org/10.1016/0016-7037(87)90220-1
Tokita, M. (2003). Large-Size-WC/Co Functionally Graded Materials Fabricated by Spark Plasma Sintering (SPS) Method. Materials Science Forum, 423–425, 39–44. https://doi.org/10.4028/www.scientific.net/msf.423-425.39
Vaniman, D., Reedy, R., Heiken, G., Olhoeft, G., & Mendell, W. (1991). The Lunar Environment. In G.H. Heiken, D.T. Vaniman, & B.M. French (Eds.), Lunar Sourcebook: A User’s Guide to the Moon, Cambridge University Press, Cambridge, (pp. 27–60).
Wright, J. K., Evans, J. R. G., & Edirisinghe, M. J. (1989). Degradation of Polyolefin Blends Used for Ceramic Injection Molding. Journal of the American Ceramic Society, 72(10), 1822–1828. https://doi.org/10.1111/j.1151-2916.1989.tb05985.x
Yakout, M., Elbestawi, M. A., & Veldhuis, S. C. (2020). A study of the relationship between thermal expansion and residual stresses in selective laser melting of Ti-6Al-4V. Journal of Manufacturing Processes, 52, 181–192. https://doi.org/10.1016/j.jmapro.2020.01.039
Zhang, C., Chen, F., Huang, Z., Jia, M., Chen, G., Ye, Y., Lin, Y., Liu, W., Chen, B., Shen, Q., Zhang, L., & Lavernia, E. J. (2019). Additive manufacturing of functionally graded materials: A review. Materials Science and Engineering: A, 764, 138209. https://doi.org/10.1016/j.msea.2019.138209
Zhang, X., Chen, Y., & Hu, J. (2018). Recent advances in the development of aerospace materials. Progress in Aerospace Sciences, 97, 22–34. https://doi.org/10.1016/j.paerosci.2018.01.001
Zhang, X., Gholami, S., Khedmati, M., Cui, B., Kim, Y.-R., Kim, Y.-J., Shin, H.-S., & Lee, J. (2021). Spark plasma sintering of a lunar regolith simulant: effects of parameters on microstructure evolution, phase transformation, and mechanical properties. Ceramics International, 47(4), 5209–5220. https://doi.org/10.1016/j.ceramint.2020.10.100
Zhang, X., Khedmati, M., Kim, Y.-R., Shin, H.-S., Lee, J., Kim, Y.-J., & Cui, B. (2019). Microstructure evolution during spark plasma sintering of FJS-1 lunar soil simulant. Journal of the American Ceramic Society, 103(2), 899–911. https://doi.org/10.1111/jace.16808
Zheng, X., Deotte, J., Alonso, M. P., Farquar, G. R., Weisgraber, T. H., Gemberling, S., Lee, H., Fang, N., & Spadaccini, C. M. (2012). Design and optimization of a light-emitting diode projection micro-stereolithography three-dimensional manufacturing system. Review of Scientific Instruments, 83(12), 125001. https://doi.org/10.1063/1.4769050