Sankey diagram energy generation, losses and supply
Combined Airborne Wind and Photovoltaic Energy System for Martian Habitats


  • Lora Ouroumova Delft University of Technology
  • Daan Witte Delft University of Technology
  • Bart Klootwijk Delft University of Technology
  • Esmée Terwindt Delft University of Technology
  • Francesca van Marion Delft University of Technology
  • Dmitrij Mordasov Delft University of Technology
  • Fernando Corte Vargas Delft University of Technology
  • Siri Heidweiller Delft University of Technology
  • Márton Géczi Delft University of Technology
  • Marcel Kempers Delft University of Technology
  • Roland Schmehl Delft University of Technology




Mars, Renewable Energy, Airborne Wind Energy, Kite Power, Microgrid, Solar Energy, Photovoltaics, Space Systems Engineering


Generating renewable energy on Mars is technologically challenging. Firstly, because, compared to Earth, key energy resources such as solar and wind are weak as a result of very low atmospheric pressure and low solar irradiation. Secondly, because of the harsh environmental conditions, the required high degree of automation, and the exceptional effort and cost involved in transporting material to the planet. Like on Earth, it is crucial to combine complementary resources for an effective renewable energy solution. In this work, we present the results of a design synthesis exercise, a 10 kW microgrid solution, based on a pumping kite power system and photovoltaic solar modules to power the construction and subsequent use of a Mars habitat. To buffer unavoidable energy fluctuations and balance seasonal and diurnal resource variations, the two energy systems are combined with a compressed gas storage system and lithium-sulphur batteries. The airborne wind energy solution was selected because of its low weight-to-wing-surface-area ratio, compact packing volume, and high capacity factor which enables it to endure strong dust storms in an airborne parking mode. The surface area of the membrane wing is 50 m2 and the mass of the entire system, including the kite control unit and ground station, is 290 kg. The performance of the microgrid was assessed by computational simulation using available resource data for a chosen deployment location on Mars. The projected costs of the system are €8.95 million, excluding transportation to Mars.

How to Cite

Ouroumova, L., Witte, D., Klootwijk, B., Terwindt, E., van Marion, F., Mordasov, D., Corte Vargas, F., Heidweiller, S., Géczi, M., Kempers, M., & Schmehl, R. (2021). Combined Airborne Wind and Photovoltaic Energy System for Martian Habitats. SPOOL, 8(2), 71–85.




Anand, S., & Fernandes, B. G. (2010). Optimal voltage level for DC microgrids. IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics Society, 3034–3039.

Barnard, A., Engler, S. T., & Binsted, K. (2019). Mars habitat power consumption constraints, prioritization, and optimization. Journal of Space Safety Engineering, 6(4), 256–264.

Basner, M., Dinges, D. F., Mollicone, D., Ecker, A., Jones, C. W., Hyder, E. C., Di Antonio, A., Savelev, I., Kan, K., Goel, N., Morukov, B. V., & Sutton, J. P. (2013). Mars 520-d mission simulation reveals protracted crew hypokinesis and alterations of sleep duration and timing. Proceedings of the National Academy of Sciences, 110(7), 2635–2640.

Bechtle, P., Schelbergen, M., Schmehl, R., Zillmann, U., & Watson, S. (2019). Airborne wind energy resource analysis. Renewable Energy, 141, 1103–1116.

Bier, H. et al (2019) Rhizome: Development of an Autarkic Design-to-Robotic-Production and -Operation System for Building Off-Earth Rhizomatic Habitats. 2nd stage proposal for an ESA ideas competition. Retrieved May 14, 2020 from

Bluck, J. (2001) Antarctic/Alaska-Like Wind Turbines Could be Used on Mars. NASA Ames News Item. Retrieved May 14, 2020 from

Bosman, R., Reid, V., Vlasblom, M., & Smeets, P. (2013). Airborne Wind Energy Tethers with High-Modulus Polyethylene Fibers. In U. Ahrens, M. Diehl, & R. Schmehl (Eds.), Airborne Wind Energy (pp. 563–585). Springer.

Boumis, R. (2017) The Average Wind Speed on Mars. Sciencing. Retrieved May 14, 2020 from

Breuer, J. C. M., & Luchsinger, R. H. (2010). Inflatable kites using the concept of Tensairity. Aerospace Science and Technology, 14(8), 557–563.

Chen, A. (2014, May 14) EDL Engineering Constraints [Workshop presentation]. Mars 2020 1st Landing Site Workshop., Pasadena, CA, United States. (

Chi, C., Lumba, R., Jung, Y. S., & Datta, A. (2020, November 16). Preliminary Structural Design and Aerodynamic Analysis of Mars Science Helicopter Rotors. ASCEND 2020. ASCEND 2020, Virtual Event.

Chuang, F.C., Crown, D.A. (2009) Geologic map of MTM 35337, 40337, and 45337 quadrangles, Deuteronilus Mensae region of Mars: U.S. Geological Survey Scientific Investigations Map 3079.

Corte Vargas, F., Géczi, M., Heidweiller, S., Kempers, M.X., Klootwijk, B.J., van Marion, F., Mordasov, D., Ouroumova, L.H., Terwindt, E.N., Witte, D. (2020) Arcadian Renewable Energy System: Renewable Energy for Mars Habitat [Technical report]. Faculty of Aerospace Engineering, Delft University of Technology.

Delgado-Bonal, A., Martín-Torres, F. J., Vázquez-Martín, S., & Zorzano, M.-P. (2016). Solar and wind exergy potentials for Mars. Energy, 102, 550–558.

Deng, Y., Li, J., Li, T., Gao, X., & Yuan, C. (2017). Life cycle assessment of lithium sulfur battery for electric vehicles. Journal of Power Sources, 343, 284–295.

Engler, S. (2017). Forecasting of Energy Requirements for Planetary Exploration Habitats Using a Modulated Neural Activation Method.

Engler, S. T., Binsted, K., & Leung, H. (2019). HI-SEAS habitat energy requirements and forecasting. Acta Astronautica, 162, 50–55.

Fechner, U. (2016). A Methodology for the Design of Kite-Power Control Systems [Delft University of Technology].

Fechner, U., & Schmehl, R. (2013). Model-Based Efficiency Analysis of Wind Power Conversion by a Pumping Kite Power System. In U. Ahrens, M. Diehl, & R. Schmehl (Eds.), Airborne Wind Energy (pp. 249–269). Springer.

Fechner, U., & Schmehl, R. (2018). Flight Path Planning in a Turbulent Wind Environment. In R. Schmehl (Ed.), Airborne Wind Energy (pp. 361–390). Springer.

Foust, J. (2017) SpaceX studying landing sites for Mars missions. Retrieved December 1, 2020 from

Fraser S.D. (2009). Power System Options for Mars Surface Exploration: Past, Present and Future. In: Badescu V. (ed) Mars: Prospective Energy and Material Resources. Springer.

Funde, A., & Shah, A. (2020). Solar Spectra. In A. Shah (Ed.), Solar Cells and Modules (Vol. 301, pp. 17–32). Springer International Publishing.

Haslach, H.W. Jr (1989) Wind Energy: a Resource for a Human Mission to Mars. Journal of the British Interplanetary Society, Vol. 42, pp. 171–178.

Head, J., Dickson, J., Mustard, J., Milliken, R., Scott, D., Johnson, B., Marchant, D., Levy, J., Kinch, K., Hvidberg, C., Forget, F., Boucher, D., Mikucki, J., Fastook, J., & Klaus, K. (2015, October 27-30) Mars Human Science Exploration and Resource Utilization: The Dichotomy Boundary Deuteronilus Mensae Exploration Zone [Workshop presentation]. First Landing Site/Exploration Zone Workshop for Human Missions to the Surface of Mars. Houston, Texas, United States.

Holstein-Rathlou, C. (2018) Wind Turbine Power Production Under Current Martian Atmospheric Conditions. Mars Workshop on Amazonian Climate 2018 (LPIContrib.No.2086)

Horneck, G., Facius, R., Reichert, M., Rettberg, P., Seboldt, W., Manzey, D., Comet, B., Maillet, A., Preiss, H., Schauer, L., Dussap, C. G., Poughon, L., Belyavin, A., Reitz, G., Baumstark-Khan, C., & Gerzer, R. (2003). Humex, a study on the survivability and adaptation of humans to long-duration exploratory missions, part I: Lunar missions. Advances in Space Research, 31(11), 2389–2401.

James, G., Chamitoff, G., Barker, D. (1998) Resource Utilization and Site Selection for a Self-Sufficient Martian Outpost”. NASA/TM-98-206538.

Jehle, C., & Schmehl, R. (2014). Applied Tracking Control for Kite Power Systems. Journal of Guidance, Control, and Dynamics, 37(4), 1211–1222.

KiteX (2020) Windcatcher. Retrieved December 20, 2020 from

Landis, G., & Hyatt, D. (2006). The Solar Spectrum on the Martian Surface and its Effect on Photovoltaic Performance. 2006 IEEE 4th World Conference on Photovoltaic Energy Conference, 1979–1982.

Luchsinger, R. H. (2013). Pumping Cycle Kite Power. In U. Ahrens, M. Diehl, & R. Schmehl (Eds.), Airborne Wind Energy (pp. 47–64). Springer.

Mars Climate Database (2006) Martian Seasons and Solar Longitude. Retrieved March 22, 2021 from

Mersmann, K. (2015) The Fact and Fiction of Martian Dust Storms. NASA Goddard Feature.

NASA (2020) Mars 2020 mission - For Scientists: Landing Site Selection. Retrieved May 11, 2020 from

NASA (2020) Mars helicopter. Retrieved December 20, 2020 from

Nelson, V. (2019). Innovative Wind Turbines: An Illustrated Guidebook (1st ed.). CRC Press.

Plaut, J. J., Safaeinili, A., Holt, J. W., Phillips, R. J., Head, J. W., Seu, R., Putzig, N. E., & Frigeri, A. (2009). Radar evidence for ice in lobate debris aprons in the mid-northern latitudes of Mars: RADAR EVIDENCE FOR MID-LATITUDE MARS ICE. Geophysical Research Letters, 36(2).

Rapp, S., Schmehl, R., Oland, E., & Haas, T. (2019). Cascaded Pumping Cycle Control for Rigid Wing Airborne Wind Energy Systems. Journal of Guidance, Control, and Dynamics, 42(11), 2456–2473.

Read, P. L., Lewis, S. R., & Mulholland, D. P. (2015). The physics of Martian weather and climate: A review. Reports on Progress in Physics, 78(12), 125901.

Rummel, J. D., Beaty, D. W., Jones, M. A., Bakermans, C., Barlow, N. G., Boston, P. J., Chevrier, V. F., Clark, B. C., de Vera, J.-P. P., Gough, R. V., Hallsworth, J. E., Head, J. W., Hipkin, V. J., Kieft, T. L., McEwen, A. S., Mellon, M. T., Mikucki, J. A., Nicholson, W. L., Omelon, C. R., … Wray, J. J. (2014). A New Analysis of Mars “Special Regions”: Findings of the Second MEPAG Special Regions Science Analysis Group (SR-SAG2). Astrobiology, 14(11), 887–968.

Schelbergen, M., & Schmehl, R. (2020). Validation of the quasi-steady performance model for pumping airborne wind energy systems. Journal of Physics: Conference Series, 1618, 032003.

Schmehl, R. (2019) Airborne Wind Energy - An introduction to an emerging technology. Retrieved May 14, 2020 from

Silberg, B. (2012) Electricity in the air. NASA Jet Propulsion Laboratory News Item. Retrieved May 14, 2020 from

van der Vlugt, R., Bley, A., Noom, M., & Schmehl, R. (2019). Quasi-steady model of a pumping kite power system. Renewable Energy, 131, 83–99.

van der Vlugt, R., Peschel, J., & Schmehl, R. (2013). Design and Experimental Characterization of a Pumping Kite Power System. In U. Ahrens, M. Diehl, & R. Schmehl (Eds.), Airborne Wind Energy (pp. 403–425). Springer.

Vermillion, C., Cobb, M., Fagiano, L., Leuthold, R., Diehl, M., Smith, R. S., Wood, T. A., Rapp, S., Schmehl, R., Olinger, D., & Demetriou, M. (2021). Electricity in the air: Insights from two decades of advanced control research and experimental flight testing of airborne wind energy systems. Annual Reviews in Control, S1367578821000109.

Viúdez‐Moreiras, D., Newman, C. E., Forget, F., Lemmon, M., Banfield, D., Spiga, A., Lepinette, A., Rodriguez‐Manfredi, J. A., Gómez‐Elvira, J., Pla‐García, J., Muller, N., Grott, M., & the TWINS/InSight team. (2020). Effects of a Large Dust Storm in the Near‐Surface Atmosphere as Measured by InSight in Elysium Planitia, Mars. Comparison With Contemporaneous Measurements by Mars Science Laboratory. Journal of Geophysical Research: Planets, 125(9).

Wertz, J.R., Larson, W.J. (1999) Space Mission Analysis and Design. Space Technology Library, (Vol. 8., 4th ed.). Springer. ISBN 978-0-7923-5901-2

Williams, D.R. (2020) Mars fact sheet. Retrieved November 24, 2020 from

Zhou, S., Yang, H., Chen, C., Zhang, J., & Wang, W. (2019) Transparent dust removal coatings for solar cell on mars and its Anti-dust mechanism. Progress in Organic Coatings, 134, 312–322.