puzzle
Learning lessons from Earth and Space towards Sustainable Multi-planetary Design

Authors

Downloads

DOI:

https://doi.org/10.7480/spool.2021.2.5431

Keywords:

Off-Earth Design, Space Architecture, In-Situ Resource Utilisation (ISRU), Material Efficiency, Reusability, Sustainability, Form-Finding, Structural Design

Abstract

Off-Earth structural design has been a subject of fascination and research for decades. Given that the vision of permanent lunar and Martian human presence is materialising, it is an opportune moment to reflect on the future applicability and challenges of off-Earth design. This article investigates contemporary thinking about off-Earth structural design – specifically focused on large-scale infrastructure such as habitats – and assesses it in terms of its sustainability. We suggest that the extra-terrestrial setting, which is characterised by resource, construction, and labour constraints, is to be analysed as an extreme case of the built environment on Earth. Subsequently, we propose that structural design methodologies originating on Earth can benefit both the off-Earth context, through their inherent material efficiency and use of local materials, and the on-Earth context, where unsustainable growth and material inefficiency dominate our built environment. As our planet rapidly heads towards a scarcity of construction materials and disruptive environmental change, what sustainability lessons can we learn from our past, and how can we apply these to extra-terrestrial construction? Finally, how can we use these lessons to futureproof our built environment?

How to Cite

Konstantatou, M., Dall’Igna, M., Wilkinson, S., Gallou, I., & Piker, D. (2021). Learning lessons from Earth and Space towards Sustainable Multi-planetary Design. SPOOL, 8(2). https://doi.org/10.7480/spool.2021.2.5431

Published

2021-10-01

Plaudit

References

Adriaenssens, S., Block, P., Veenendaal, D., & Williams, C. (2014). Shell structures for architecture: Form Finding and Optimization. Routledge.

Block, P., Van Mele, T., Rippmann, M., & Paulson, N. (2017). Beyond Bending. DETAIL.

Bonwetsch, T., Kobel, D., F., G., & Kohler, M. (2006). The informed Wall: Applying additive digital fabrication techniques on architecture. Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture, 489–495.

Brütting, J., De Wolf, C., & Fivet, C. (2019). The reuse of load-bearing components. IOP Conference Series: Earth and Environmental Science, 225, 012025. https://doi.org/10.1088/1755-1315/225/1/012025

Cesaretti, G., Dini, E., De Kestelier, X., Colla, V., & Pambaguian, L. (2014). Building components for an outpost on the Lunar soil by means of a novel 3D printing technology. Acta Astronautica, 93, 430–450.

Choisy, A. (1883). L’art de bâtir chez les Byzantins. Librairie de la Société anonyme de publications périodiques.

Day, A. S. (1965). An introduction to dynamic relaxation. The Engineer, 219, 218–221.

De Wolf, C., Hoxha, E., & Fivet, C. (2020). Comparison of environmental assessment methods when reusing building components: A case study. Sustainable Cities and Society, 61, 102322. https://doi.org/10.1016/j.scs.2020.102322

Dyskin, A. V., Estrin, Y., Pasternak, E., Khor, H. C., & Kanel-Belov, A. J. (2005). The principle of topological interlocking in extraterrestrial construction. Acta Astronautica, 57(1), 10–21. https://doi.org/10.1016/j.actaastro.2004.12.005

European Space Agency. (2019). Advanced Closed Loop System. ESA. https://www.esa.int/Science_Exploration/Human_and_Robotic_Exploration/Research/Advanced_Closed_Loop_System

Fitchen, J. (1981). The Construction of Gothic Cathedrals. The University of Chicago Press.

Frézier, A. F. (1738). La théorie et la pratique de la coupe des pierres et des bois, pour la construction des voûtes et autres parties des bâtiments civils et militaires, ou Traité de stéréotomie à l’usage de l’architecture. Doulsseker.

Häder, D.-P., Braun, M., & Hemmersbach, R. (2018). Bioregenerative Life Support Systems in Space Research. In M. Braun, M. Böhmer, D.-P. Häder, R. Hemmersbach, & K. Palme, Gravitational Biology I (pp. 113–122). Springer International Publishing. https://doi.org/10.1007/978-3-319-93894-3_8

Hassell & Eckersley O’Callaghan. (2018). NASA 3D Printed Habitat Challenge. Hassell. https://www.hassellstudio.com/project/nasa-3d-printed-habitat-challenge

Heyman, J. (1995). The Stone Skeleton. Cambridge University Press.

Hilburg, J. (2020, October 2). NASA, BIG, SEArch+, and ICON team up to develop a lunar city. The Architect’s Newspaper. https://www.archpaper.com/2020/10/nasa-big-search-icon-project-olympus/

Howe, S. A., Wilcox, B. H., McQuin, C., Townsend, J., Rieber, R. R., Barmatz, M., & Leichty, J. (2013). Faxing structures to the moon: Freeform additive construction system (FACS. AIAA SPACE 2013 Conference and Exposition, 5437.

Imhof, B., Urbina, D., Weiss, P., Sperl, M., Hoheneder, W., Waclavicek, R., Madakashira, H. K., Salini, J., Govindaraj, S., Gancet, J., Mohamed, M. P., Gobert, T., Fateri, M., Meurisse, A., Lopez, O., & Preisinger, C. (2017). Advancing Solar Sintering for Building A Base On The Moon. In 69th International Astronautical Congress (IAC).

Inocente, D., Koop, C., Petrov, G. I., Hoffman, J. A., Sumini, V., Makaya, A., Arnhof, M., Lakk, H., Lamaze, B., Cowley, A., Binns, D., Landgraf, M., Messina, P., & Haingeré, C. (2019). Master Planning and Space Architecture for a Moon Village. In 70th International Astronautical Congress (IAC).

Kalapodis, N., Kampas, G., & Ktenidou, O.-J. (2020). A review towards the design of extraterrestrial structures: From regolith to human outposts. Acta Astronautica, 175, 540–569. https://doi.org/10.1016/j.actaastro.2020.05.038

Liddell, I. (2015). Frei Otto and the development of gridshells. Case Studies in Structural Engineering, 4, 39–49. https://doi.org/10.1016/j.csse.2015.08.001

Loing, V., Baverel, O., Caron, J.-F., & Mesnil, R. (2020). Free-form structures from topologically interlocking masonries. Automation in Construction, 113, 103117. https://doi.org/10.1016/j.autcon.2020.103117

MARSHA by AI SpaceFactory. (2018). AI SpaceFactory. https://www.aispacefactory.com/marsha

Mesnil, R., Douthe, C., Gobin, T., & Baverel, O. (2018). Form Finding and Design of a Timber Shell-Nexorade Hybrid. Advances in Architectural Geometry.

Mueller, R., Howe, S., Kochmann, D., Ali, H., Andersen, C., Burgoyne, H., Chambers, W., Clinton, R., De Kestellier, X., Ebelt, K., & Gerner, S. (2016). Automated additive construction (AAC) for Earth and space using in-situ resources. Proceedings of Earth & Space 2016.

Mueller, R., Prater, T. J., Roman, M., Edmunson, J. E., Fiske, M., & Carrato, P. (2019). NASA Centennial Challenge: Three Dimensional (3D) Printed Habitat. 70th International Astronautical Congress (IAC, 3.

Ochsendorf, J. (2010). Guastavino Vaulting: The Art of Structural Tile. Princeton Architectural Press.

Oliver, P. (1997). Encyclopedia of vernacular architecture of the world. Cambridge University Press.

Owens, A., & DeWeck, O. (2016). Systems Analysis of In-Space Manufacturing Applications for International Space Station in Support of the Evolvable Mars Campaign. Proceedings of the American Institute of Aeronautics and Astronautics SPACE Forum.

Owens, A., DeWeck, O., Stromgren, C., Goodliff, K. E., & Cirillo, W. (2017). Supportability Challenges, Metrics, and Key Decisions for Human Spaceflight. Proceedings of the American Institute of Aeronautics and Astronautics (AIAA).

Parascho, S., Han, I. X., Walker, S., Beghini, A., Bruun, E. P. G., & Adriaenssens, S. (2020). Robotic vault: A cooperative robotic assembly method for brick vault construction. Construction Robotics, 4(3–4), 117–126. https://doi.org/10.1007/s41693-020-00041-w

Paris, V., Pizzigoni, A., & Adriaenssens, S. (2020). Statics of self-balancing masonry domes constructed with a cross-herringbone spiraling pattern. Engineering Structures, 215, 110440. https://doi.org/10.1016/j.engstruct.2020.110440

Poleni, G. (1748). Memorie Istoriche della Gran Cupola del Tempio Vaticano. Stamperia del Seminario di Padova.

Ramage, M., Ochsendorf, J., & Rich, P. (2009). Sustainable shells: New African vaults built with soil-cement tiles. Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium.

Rippmann, M., Lachauer, L., & Block, P. (2012). Interactive Vault Design. International Journal of Space Structures, 27(4), 219–230. https://doi.org/10.1260/0266-3511.27.4.219

Schek, H.-J. (1974). The force density method for form finding and computation of general networks. Computer Methods in Applied Mechanics and Engineering, 3(1), 115–134. https://doi.org/10.1016/0045-7825(74)90045-0

Todisco, Skidmore, Owings & Merrill. (2019, April 9). SOM Releases Concept for Moon Village, the First Permanent Human Settlement on the Lunar Surface. SOM. https://www.som.com/news/som_releases_concept_for_moon_village_the_first_permanent_human_settlement_on_the_lunar_surface

L., Sanitate, G., & Lacorte, G. (2017). Geometry and Proportions of the Traditional Trulli of Alberobello. Nexus Network Journal, 19(3), 701–721. https://doi.org/10.1007/s00004-016-0326-4

Space Exploration Architecture & Clouds AO. (2016). Mars Ice House. SEArch+. http://www.spacexarch.com/mars-ice-house

Wendland, D. (2004). Free-handed vault construction in the European building tradition: Vaulting patterns in half-stone vaults. 13th International Brick and Block Masonry Conference.

Werfel, J., Petersen, K., & Nagpal, R. (2014). Designing collective behavior in a termite-inspired robot construction team. Science, 343(6172), 754–758.

Wilkinson, S., Musil, J., Dierckx, J., Gallou, I., & Kestelier, X. (2016). Concept Design of an Outpost for Mars using Autonomous Additive Swarm Construction. ESA Acta Futura Special Issue, 10, 121–129.

Wilkinson, S., Musil, J., Dierckx, J., Maddock, R., Yanga, X., Dall’Igna, M., Gheorghiu, O., & De Kestelier, X. (2016). Preliminary findings from a multi-robot system for large-scale extra-planetary additive construction. In 67th International Astronautical Congress (IAC).

Williams, C. (2001). The analytic and numerical definition of the geometry of the British Museum Great Court Roof. Mathematics & Design, 434–440.