Lunar Regolith Simulant
Additive manufacturing of Lunar Regolith Simulant using Direct Ink Writing





ISRU, additive manufacturing, 3D printing, direct ink writing, lunar regolith, sintering


This work explores the use of a lunar regolith simulant as feedstock for the direct ink writing additive manufacturing process as an option to enable future lunar in-situ resource utilisation. The feasibility of this approach is demonstrated in a laboratory setting by manufacturing objects with different geometries, using methyl cellulose or sodium alginate as binding agents, water and lunar regolith simulant to create a viscous, printable ‘ink’. A custom three-axis gantry system is used to produce green bodies for subsequent sintering. The sintered objects are characterised using compressive strength measurements and scanning electron microscopy (SEM). It is proposed that the bioorganic compounds used in this work as additives could be produced in situ for a future lunar base through photosynthesis, utilising carbon dioxide exhaled by astronauts together with the available sunlight. Thus, all the components used for the dispersion – additive, water, and regolith – are available in situ. The compressive strength for sintered samples produced with this method was measured to be 2.4 MPa with a standard deviation of 0.2 MPa (n = 4). It is believed, based on the high sample porosity observed during SEM analysis, that the comparatively low mechanical strength of the samples is due to a low sintering temperature, and that the mechanical strength could be increased by optimising the sintering process further.

How to Cite

Grundström, B., Schild, T., & Cowley, A. (2021). Additive manufacturing of Lunar Regolith Simulant using Direct Ink Writing. SPOOL, 8(2), 55–70.




Allan, S., Braunstein, J., Baranova, I., Vandervoort, N., Fall, M., & Shulman, H. (2013). Computational modeling and experimental microwave processing of JSC-1A lunar simulant. Journal of Aerospace Engineering.

Anand, M., Crawford, I. A., Balat-Pichelin, M., Abanades, S., Van Westrenen, W., Péraudeau, G., Jaumann, R., & Seboldt, W. (2012). A brief review of chemical and mineralogical resources on the Moon and likely initial in situ resource utilization (ISRU) applications. Planetary and Space Science, 74(1), 42–48.

Balla, V. K., Roberson, L. B., O’Connor, G. W., Trigwell, S., Bose, S., & Bandyopadhyay, A. (2012). First demonstration on direct laser fabrication of lunar regolith parts. Rapid Prototyping Journal, 18(6), 451–457.

Buchner, C., Pawelke, R. H., Schlauf, T., Reissner, A., & Makaya, A. (2018). A new planetary structure fabrication process using phosphoric acid. Acta Astronautica, 143(June 2017), 272–284.

Caprio, L., Demir, A. G., Previtali, B., & Colosimo, B. M. (2020). Determining the feasible conditions for processing lunar regolith simulant via laser powder bed fusion. Additive Manufacturing, 32(July 2019), 101029.

Cesaretti, G., Dini, E., De Kestelier, X., Colla, V., & Pambaguian, L. (2014). Building components for an outpost on the Lunar soil by means of a novel 3D printing technology. Acta Astronautica, 93, 430–450.

Colaprete, A., Schultz, P., Heldmann, J., Wooden, D., Shirley, M., Ennico, K., Hermalyn, B., Marshall, W., Ricco, A., Elphic, R. C., Goldstein, D., Summy, D., Bart, G. D., Asphaug, E., Korycansky, D., Landis, D., & Sollitt, L. (2010). Detection of water in the LCROSS ejecta plume. Science, 330(6003), 463–468.

Dai, L., Cheng, T., Duan, C., Zhao, W., Zhang, W., Zou, X., Aspler, J., & Ni, Y. (2019). 3D printing using plant-derived cellulose and its derivatives: A review. Carbohydrate Polymers, 203(March 2018), 71–86.

Engelschiøn, V. S., Eriksson, S. R., Cowley, A., Fateri, M., Meurisse, A., Kueppers, U., & Sperl, M. (2020). EAC-1A: A novel large-volume lunar regolith simulant. Scientific Reports, 10(1), 1–9.

Faierson, E. J., Logan, K. V., Stewart, B. K., & Hunt, M. P. (2010). Demonstration of concept for fabrication of lunar physical assets utilizing lunar regolith simulant and a geothermite reaction. Acta Astronautica, 67(1–2), 38–45.

Fateri, M., & Gebhardt, A. (2015). Process parameters development of selective Laser Melting of lunar regolith for on-site manufacturing applications. International Journal of Applied Ceramic Technology, 12(1), 46–52.

Goulas, A., & Friel, R. J. (2016). 3D printing with moondust. Rapid Prototyping Journal, 22(6), 864–870.

Goulas, A., Harris, R. A., & Friel, R. J. (2016). Additive manufacturing of physical assets by using ceramic multicomponent extra-terrestrial materials. Additive Manufacturing, 10, 36–42.

Hart, K. R., Frketic, J. B., & Brown, J. R. (2018). Recycling meal-ready-to-eat (MRE) pouches into polymer filament for material extrusion additive manufacturing. Additive Manufacturing, 21(February), 536–543.

Hinterman, E. (2020). Simulating oxygen production on Mars for the Mars Oxygen In-Situ Resource Utilization Experiment. Acta Astronautica, 170(October 2019), 678–685.

ISO/ASTM. (2015). INTERNATIONAL STANDARD ISO / ASTM 52900 Additive manufacturing — General principles — Terminology. International Organization for Standardization.

Jakus, A. E., Koube, K. D., Geisendorfer, N. R., & Shah, R. N. (2017). Robust and Elastic Lunar and Martian Structures from 3D-Printed Regolith Inks. Scientific Reports, 7, 1–8.

Jakus, A. E., Taylor, S. L., Geisendorfer, N. R., Dunand, D. C., & Shah, R. N. (2015). Metallic Architectures from 3D-Printed Powder-Based Liquid Inks. Advanced Functional Materials, 25(45), 6985–6995.

Lewis, J. A., Smay, J. E., Stuecker, J., & Cesarano, J. (2006). Direct ink writing of three-dimensional ceramic structures. Journal of the American Ceramic Society, 89(12), 3599–3609.

Liu, Q., Li, Q., Xu, S., Zheng, Q., & Cao, X. (2018). Preparation and properties of 3D printed alginate-chitosan polyion complex hydrogels for tissue engineering. Polymers, 10(6).

Menezes, A. A., Cumbers, J., Hogan, J. A., & Arkin, A. P. (2015). Towards synthetic biological approaches to resource utilization on space missions. Journal of the Royal Society Interface, 12(102).

Meurisse, A., Makaya, A., Willsch, C., & Sperl, M. (2018). Solar 3D printing of lunar regolith. Acta Astronautica, 152(September), 800–810.

Meurisse, A., Beltzung, J.C., Kolbe, M., Cowley, A., & Sperl, M. (2017). Influence of Mineral Composition on Sintering Lunar Regolith. Journal of Aerospace Engineering. 30. 04017014.

Montes, C., Broussard, K., Gongre, M., Simicevic, N., Mejia, J., Tham, J., Allouche, E., & Davis, G. (2015). Evaluation of lunar regolith geopolymer binder as a radioactive shielding material for space exploration applications. Advances in Space Research, 56(6), 1212–1221.

Nieke, P., Kita, J., Häming, M., & Moos, R. (2019). Manufacturing dense thick films of lunar regolith simulant EAC-1 at room temperature. Materials, 12(3).

Perrot, A., Rangeard, D., & Courteille, E. (2018). 3D printing of earth-based materials: Processing aspects. Construction and Building Materials, 172, 670–676.

Pilehvar, S., Arnhof, M., Pamies, R., Valentini, L., & Kjøniksen, A. L. (2020). Utilization of urea as an accessible superplasticizer on the moon for lunar geopolymer mixtures. Journal of Cleaner Production, 247.

Rueschhoff, L., Costakis, W., Michie, M., Youngblood, J., & Trice, R. (2016). Additive Manufacturing of Dense Ceramic Parts via Direct Ink Writing of Aqueous Alumina Suspensions. International Journal of Applied Ceramic Technology, 13(5), 821–830.

Schleppi, J., Gibbons, J., Groetsch, A., Buckman, J., Cowley, A., & Bennett, N. (2019). Manufacture of glass and mirrors from lunar regolith simulant. Journal of Materials Science, 54(5), 3726–3747.

Schlordt, T., Schwanke, S., Keppner, F., Fey, T., Travitzky, N., & Greil, P. (2013). Robocasting of alumina hollow filament lattice structures. Journal of the European Ceramic Society, 33(15–16), 3243–3248.

Sherwood, B. (2019). Principles for a practical Moon base. Acta Astronautica, 160(March), 116–124.

Song, L., Xu, J., Fan, S., Tang, H., Li, X., Liu, J., & Duan, X. (2019). Vacuum sintered lunar regolith simulant: Pore-forming and thermal conductivity. Ceramics International, 45(3), 3627–3633.

Tang, S., Yang, L., Li, G., Liu, X., & Fan, Z. (2019). 3D printing of highly-loaded slurries via layered extrusion forming: Parameters optimization and control. Additive Manufacturing, 28(February), 546–553.

Taylor, S. L., Jakus, A. E., Koube, K. D., Ibeh, A. J., Geisendorfer, N. R., Shah, R. N., & Dunand, D. C. (2018). Sintering of micro-trusses created by extrusion-3D-printing of lunar regolith inks. Acta Astronautica, 143(September 2017), 1–8.

Taylor, S. L., Jakus, A. E., Shah, R. N., & Dunand, D. C. (2017). Iron and Nickel Cellular Structures by Sintering of 3D-Printed Oxide or Metallic Particle Inks. Advanced Engineering Materials, 19(11).

Toutanji, H. A., Evans, S., & Grugel, R. N. (2012). Performance of lunar sulfur concrete in lunar environments. Construction and Building Materials, 29, 444–448.

Way, J. C., Silver, P. A., & Howard, R. J. (2011). Sun-driven microbial synthesis of chemicals in space. International Journal of Astrobiology, 10(4), 359–364.

Xu, J., Cao, H., Sun, X., Tang, H., Ma, H., Song, L., Li, X., Duan, X., & Liu, J. (2019). 3D printing of hypothetical brick by selective laser sintering using lunar regolith simulant and ilmenite powders. 1084208(February 2019), 9.

Zocca, A., Fateri, M., Al-Sabbagh, D., & Günster, J. (2020). Investigation of the sintering and melting of JSC-2A lunar regolith simulant. Ceramics International, February, 0–1.