Towards a post-carbon re-imagining of the interplay between natural and built environments, facilitated by bio-inspired robotic technology
Downloads
Keywords:
swarm robotics, robotic additive manufacturing, emergent behaviour, computational modelling, termitesAbstract
There is an established idea – found in science fiction, architectural studios, and scientific papers alike – of stainable buildings crafted from bio-based materials, colonized by plant and animal life, and blending seamlessly into the natural surroundings. Such buildings might one day be built, maintained and remodelled by swarms of autonomous robots, allowing them to evolve in response to the changing needs of their inhabitants. Inspired by that vision, this paper contributes to the field of swarm intelligence with a focus on robotic construction and human-swarm interaction. Along with a short literature review on robotic building, swarm intelligence and biocompatible building materials, the paper presents an open-source simulation of abstracted termite-like swarm construction. The focus is mainly on human-swarm interaction, specifically how to influence the emergent behaviour of an autonomous swarm in order to elicit a desired outcome while retaining the robustness and adaptability of a self-organized system. The simulator is used to demonstrate a set of four autonomous swarm behaviours that are representative of construction tasks.
How to Cite
Published
Issue
Section
Categories
Plaudit
References
Agirbas, A. (2019). Façade form-finding with swarm intelligence. Automation in Construction, 99, 140–151. https://doi.org/10.1016/j.autcon.2018.12.003 DOI: https://doi.org/10.1016/j.autcon.2018.12.003
Allwright, M., Bhalla, N., El-faham, H., Antoun, A., Pinciroli, C., & Dorigo, M. (2014). SRoCS: Leveraging Stigmergy on a Multi-robot Construction Platform for Unknown Environments. In M. Dorigo, M. Birattari, S. Garnier, H. Hamann, M. Montes De Oca, C. Solnon, & T. Stützle (Hrsg.), Swarm Intelligence (Bd. 8667, S. 158–169). Springer International Publishing. https://doi.org/10.1007/978-3-319-09952-1_14 DOI: https://doi.org/10.1007/978-3-319-09952-1_14
Allwright, M., Zhu, W., & Dorigo, M. (2019). An open-source multi-robot construction system. HardwareX, 5, e00050. https://doi.org/10.1016/j.ohx.2018.e00050 DOI: https://doi.org/10.1016/j.ohx.2018.e00050
Augugliaro, F., Mirjan, A., Gramazio, F., Kohler, M., & D’Andrea, R. (2013). Building tensile structures with flying machines. 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 3487–3492. https://doi.org/10.1109/IROS.2013.6696853 DOI: https://doi.org/10.1109/IROS.2013.6696853
Bier, H., Hidding, A., & Galli, M. (2020, Oktober 14). Design-to-Robotic-Production and -Assembly for Architectural Hybrid Structures. 37th International Symposium on Automation and Robotics in Construction, Kitakyushu, Japan. https://doi.org/10.22260/ISARC2020/0207 DOI: https://doi.org/10.22260/ISARC2020/0207
Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press. https://doi.org/10.1093/oso/9780195131581.001.0001 DOI: https://doi.org/10.1093/oso/9780195131581.001.0001
Bonabeau, E., Theraulaz, G., Deneubourg, J., Franks, N. R., Rafelsberger, O., Joly, J., & Blanco, S. (1998). A model for the emergence of pillars, walls and royal chambers in termite nests. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 353(1375), 1561–1576. https://doi.org/10.1098/rstb.1998.0310 DOI: https://doi.org/10.1098/rstb.1998.0310
Brambilla, M., Ferrante, E., Birattari, M., & Dorigo, M. (2013). Swarm robotics: A review from the swarm engineering perspective. Swarm Intelligence, 7(1), 1–41. https://doi.org/10.1007/s11721-012-0075-2 DOI: https://doi.org/10.1007/s11721-012-0075-2
Buus, D. P. (2006). Constructing Human-Like Architecture with Swarm Intelligence. Thesis, Aalborg University Department of Computer Science. https://projekter.aau.dk/projekter/files/61068317/1154483391.pdf
Calovi, D. S., Bardunias, P., Carey, N., Scott Turner, J., Nagpal, R., & Werfel, J. (2019). Surface curvature guides early construction activity in mound-building termites. Philosophical Transactions of the Royal Society B: Biological Sciences, 374(1774), 20180374. https://doi.org/10.1098/rstb.2018.0374 DOI: https://doi.org/10.1098/rstb.2018.0374
Camere, S., & Karana, E. (2018). Fabricating materials from living organisms: An emerging design practice. Journal of Cleaner Production, 186, 570–584. https://doi.org/10.1016/j.jclepro.2018.03.081 DOI: https://doi.org/10.1016/j.jclepro.2018.03.081
Chiang, Y.-C., Bier, H., & Mostafavi, S. (2018). Design to Robotic Assembly: An Exploration in Stacking. Frontiers in Digital Humanities, 5, 23. https://doi.org/10.3389/fdigh.2018.00023 DOI: https://doi.org/10.3389/fdigh.2018.00023
Debrah, C., Chan, A. P. C., & Darko, A. (2022). Artificial intelligence in green building. Automation in Construction, 137, 104192. https://doi.org/10.1016/j.autcon.2022.104192 DOI: https://doi.org/10.1016/j.autcon.2022.104192
Deng, Y., Hua, Y., Napp, N., & Petersen, K. (2019). A Compiler for Scalable Construction by the TERMES Robot Collective. Robotics and Autonomous Systems, 121, 103240. https://doi.org/10.1016/j.robot.2019.07.010 DOI: https://doi.org/10.1016/j.robot.2019.07.010
Dias, P. G. F., Silva, M. C., Rocha Filho, G. P., Vargas, P. A., Cota, L. P., & Pessin, G. (2021). Swarm Robotics: A Perspective on the Latest Reviewed Concepts and Applications. Sensors, 21(6), 2062. https://doi.org/10.3390/s21062062 DOI: https://doi.org/10.3390/s21062062
Farrugia, C., Borg, R. P., Ferrara, L., & Buhagiar, J. (2019). The Application of Lysinibacillus sphaericus for Surface Treatment and Crack Healing in Mortar. Frontiers in Built Environment, 5, 62. https://doi.org/10.3389/fbuil.2019.00062 DOI: https://doi.org/10.3389/fbuil.2019.00062
Guamán Rivera, R., García Alvarado, R., Martínez-Rocamora, A., & Auat Cheein, F. (2021). Workspace Analysis of a Mobile Manipulator with Obstacle Avoidance in 3D Printing Tasks. Applied Sciences, 11(17), 7923. https://doi.org/10.3390/app11177923 DOI: https://doi.org/10.3390/app11177923
Heinrich, M. K., Von Mammen, S., Hofstadler, D. N., Wahby, M., Zahadat, P., Skrzypczak, T., Soorati, M. D., Krela, R., Kwiatkowski, W., Schmickl, T., Ayres, P., Stoy, K., & Hamann, H. (2019). Constructing living buildings: A review of relevant technologies for a novel application of biohybrid robotics. Journal of The Royal Society Interface, 16(156), 20190238. https://doi.org/10.1098/rsif.2019.0238 DOI: https://doi.org/10.1098/rsif.2019.0238
Heveran, C. M., Williams, S. L., Qiu, J., Artier, J., Hubler, M. H., Cook, S. M., Cameron, J. C., & Srubar, W. V. (2020). Biomineralization and Successive Regeneration of Engineered Living Building Materials. Matter, 2(2), 481–494. https://doi.org/10.1016/j.matt.2019.11.016 DOI: https://doi.org/10.1016/j.matt.2019.11.016
Munaro, M. R., Tavares, S. F., & Bragança, L. (2020). Towards circular and more sustainable buildings: A systematic literature review on the circular economy in the built environment. Journal of Cleaner Production, 260, 121134. https://doi.org/10.1016/j.jclepro.2020.121134 DOI: https://doi.org/10.1016/j.jclepro.2020.121134
Oskam, P., Bier, H., & Alavi, H. (2022). Bio-Cyber-Physical ‘Planetoids’ for Repopulating Residual Spaces. SPOOL, 9(1), 49–55. https://doi.org/10.47982/spool.2022.1.04 DOI: https://doi.org/10.47982/spool.2022.1.04
Paolini, A., Kollmannsberger, S., & Rank, E. (2019). Additive manufacturing in construction: A review on processes, applications, and digital planning methods. Additive Manufacturing, 30, 100894. https://doi.org/10.1016/j.addma.2019.100894 DOI: https://doi.org/10.1016/j.addma.2019.100894
Perna, A., & Theraulaz, G. (2017). When social behaviour is moulded in clay: On growth and form of social insect nests. Journal of Experimental Biology, 220(1), 83–91. https://doi.org/10.1242/jeb.143347 DOI: https://doi.org/10.1242/jeb.143347
Petersen, K. H., Napp, N., Stuart-Smith, R., Rus, D., & Kovac, M. (2019). A review of collective robotic construction. Science Robotics, 4(28), eaau8479. https://doi.org/10.1126/scirobotics.aau8479 DOI: https://doi.org/10.1126/scirobotics.aau8479
Sustarevas, J., Butters, D., Hammid, M., Dwyer, G., Stuart-Smith, R., & Pawar, V. M. (2018). MAP - A Mobile Agile Printer Robot for on-site Construction. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2441–2448. https://doi.org/10.1109/IROS.2018.8593815 DOI: https://doi.org/10.1109/IROS.2018.8593815
Tang, J., Liu, G., & Pan, Q. (2021). A Review on Representative Swarm Intelligence Algorithms for Solving Optimization Problems: Applications and Trends. IEEE/CAA Journal of Automatica Sinica, 8(10), 1627–1643. https://doi.org/10.1109/JAS.2021.1004129 DOI: https://doi.org/10.1109/JAS.2021.1004129
Tiryaki, M. E., Zhang, X., & Pham, Q.-C. (2019). Printing-while-moving: A new paradigm for large-scale robotic 3D Printing. 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2286–2291. https://doi.org/10.1109/IROS40897.2019.8967524 DOI: https://doi.org/10.1109/IROS40897.2019.8967524
Von Mammen, S., & Jacob, C. (2008). Swarm-driven idea models – from insect nests to modern architecture. Eco-Architecture II, I, 117–126. https://doi.org/10.2495/ARC080121 DOI: https://doi.org/10.2495/ARC080121
Werfel, J., Petersen, K., & Nagpal, R. (2014). Designing Collective Behavior in a Termite-Inspired Robot Construction Team. Science, 343(6172), 754–758. https://doi.org/10.1126/science.1245842 DOI: https://doi.org/10.1126/science.1245842
Wiesenhuetter, S., Wilde, A., & Noennig, J. R. (2016). Swarm Intelligence in Architectural Design. In Y. Tan, Y. Shi, & B. Niu (Hrsg.), Advances in Swarm Intelligence (Bd. 9712, S. 3–13). Springer International Publishing. https://doi.org/10.1007/978-3-319-41000-5_1 DOI: https://doi.org/10.1007/978-3-319-41000-5_1
Willmann, J., Augugliaro, F., Cadalbert, T., D’Andrea, R., Gramazio, F., & Kohler, M. (2012). Aerial Robotic Construction towards a New Field of Architectural Research. International Journal of Architectural Computing, 10(3), 439–459. https://doi.org/10.1260/1478-0771.10.3.439 DOI: https://doi.org/10.1260/1478-0771.10.3.439
Xu, Z., Song, T., Guo, S., Peng, J., Zeng, L., & Zhu, M. (2022). Robotics technologies aided for 3D printing in construction: A review. The International Journal of Advanced Manufacturing Technology, 118(11–12), 3559–3574. https://doi.org/10.1007/s00170-021-08067-2 DOI: https://doi.org/10.1007/s00170-021-08067-2
Zhang, K., Chermprayong, P., Xiao, F., Tzoumanikas, D., Dams, B., Kay, S., Kocer, B. B., Burns, A., Orr, L., Alhinai, T., Choi, C., Darekar, D. D., Li, W., Hirschmann, S., Soana, V., Ngah, S. A., Grillot, C., Sareh, S., Choubey, A., … Kovac, M. (2022). Aerial additive manufacturing with multiple autonomous robots. Nature, 609(7928), 709–717. https://doi.org/10.1038/s41586-022-04988-4 DOI: https://doi.org/10.1038/s41586-022-04988-4
Zhang, X., Li, M., Lim, J. H., Weng, Y., Tay, Y. W. D., Pham, H., & Pham, Q.-C. (2018). Large-scale 3D printing by a team of mobile robots. Automation in Construction, 95, 98–106. https://doi.org/10.1016/j.autcon.2018.08.004 DOI: https://doi.org/10.1016/j.autcon.2018.08.004