cover image article spool
The migrating walls

Continuously reconfigurable interlocking modular discrete structures assembled by mobile robots

Authors

Downloads

Keywords:

localization, interlocking parts, mobile robots, mobile platforms, discrete architecture, autonomous construction, computer vision, collective robotic construction

Abstract

This paper presents a comparison of different workflows for mobile robotic fabrication using modular building blocks. Different localization, locomotion, and interlocking building systems strategies are tested and compared. The work is influenced by related research into ecosystems of building parts, design software, and builder robots to digitize the construction work. For localization, it compares LIDARs, reacTIVision, and ArUco markers. As a mobile platform, a MIR100 robot platform, a 3.3 m linear axis, and a manual trolly are used. Interlocking components such as wood slates, custom-made bricks, and interlocking wood building blocks are used. The research is in the field of collective robotic construction (CRC) using bespoke robots designed in tandem with specific discrete building blocks.

How to Cite

Sardenberg, V., Kondziela, A., Brünner, A., Daadoush, Y., Wiese, H., & Becker, M. (2024). The migrating walls: Continuously reconfigurable interlocking modular discrete structures assembled by mobile robots. SPOOL, 11(1), 23–48. Retrieved from https://spool.ac/index.php/spool/article/view/253

Published

2024-07-20

Plaudit

References

Abdel-Rahman, A., Cameron, C., Jenett, B., Smith, M., & Gershenfeld, N. (2022). Self-replicating hierarchical modular robotic swarms. Communications Engineering, 1(1), Article 1. https://doi.org/10.1038/s44172-022-00034-3 DOI: https://doi.org/10.1038/s44172-022-00034-3

Akinade, O. O., Oyedele, L. O., Ajayi, S. O., Bilal, M., Alaka, H. A., Owolabi, H. A., Bello, S. A., Jaiyeoba, B. E., & Kadiri, K. O. (2017). Design for Deconstruction (DfD): Critical success factors for diverting end-of-life waste from landfills. Waste Management, 60, 3–13. https://doi.org/10.1016/j.wasman.2016.08.017 DOI: https://doi.org/10.1016/j.wasman.2016.08.017

Anastasiades, K., Blom, J., Buyle, M., & Audenaert, A. (2020). Translating the circular economy to bridge construction: Lessons learnt from a critical literature review. Renewable and Sustainable Energy Reviews, 117, 109522. https://doi.org/10.1016/j.rser.2019.109522 DOI: https://doi.org/10.1016/j.rser.2019.109522

Arlet, J. L. (2021). Innovative Carpentry and Hybrid Joints in Contemporary Wooden Architecture. Arts, 10(3), Article 3. https://doi.org/10.3390/arts10030064 DOI: https://doi.org/10.3390/arts10030064

Arquivo – simplificando o reuso de materiais. (n.d.). Retrieved July 27, 2023, from https://arquivoreuso.com.br/

Batalle Garcia, A., Cebeci, I. Y., Vargas Calvo, R., & Gordon, M. (2021). Material (data) Intelligence—Towards a Circular Building Environment. A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (Eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, Pp. 361-370. https://papers.cumincad.org/cgi-bin/works/paper/caadria2021_088

Becker, M., Sardenberg, V., & Schacht, M. (2020). Extending the Robotic Workspace by Motion Tracking Large Workpieces. International Conference on Human-Computer Interaction, 156–162. DOI: https://doi.org/10.1007/978-3-030-50729-9_21

Berger, E. A., Markus. (2022). Community Repair in South Africa: An Interview with Kevin Kimwelle. In Repair. Routledge. DOI: https://doi.org/10.4324/9781003244028

Bock, T. (2007). Construction robotics. Autonomous Robots, 22(3), 201–209. https://doi.org/10.1007/s10514-006-9008-5 DOI: https://doi.org/10.1007/s10514-006-9008-5

Ca gaze ? (n.d.). Saga | Collectif d’architecture | Nantes | Port Elizabeth. Retrieved July 27, 2023, from http://www.collectifsaga.com/fr/ca-gaze/

Carney, M., & Jenett, B. (2016, September 27). Relative Robots: Scaling Automated Assembly of Discrete Cellular Lattices. ASME 2016 11th International Manufacturing Science and Engineering Conference. https://doi.org/10.1115/MSEC2016-8837 DOI: https://doi.org/10.1115/MSEC2016-8837

Certain Measures. (n.d.). Retrieved July 27, 2023, from https://certainmeasures.com

Claypool, M. (2018). Disrupting the Digital: An Architecture of Parts. https://www.acsa-arch.org/chapter/disrupting-the-digital-an-architecture-of-parts/ DOI: https://doi.org/10.35483/ACSA.Intl.2018.16

de Paula, A. (2023). Discrete Automation: Robotic Construction Workflow for Reconfigurable Timber Housing. https://repository.tudelft.nl/islandora/object/uuid%3Ac3436d86-c7d7-48c2-833a-d2fad07fabe5

Dounas, T., Jabi, W., & Lombardi, D. (2021). Non-Fungible Building Components: Using Smart Contracts for a Circular Economy in the Built Environment. Gomez, P and Braida, F (Eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, Pp. 1189–1198. https://papers.cumincad.org/cgi-bin/works/paper/sigradi2021_20 DOI: https://doi.org/10.5151/sigradi2021-20

Drude, J. P., Rossi, A., & Becker, M. (2020). Project DisCo: Choreographing Discrete Building Blocks in Virtual Reality. In C. Gengnagel, O. Baverel, J. Burry, M. Ramsgaard Thomsen, & S. Weinzierl (Eds.), Impact: Design With All Senses (pp. 288–299). Springer International Publishing. https://doi.org/10.1007/978-3-030-29829-6_23 DOI: https://doi.org/10.1007/978-3-030-29829-6_23

Dunker, P. A., Lewinger, W. A., Hunt, A. J., & Quinn, R. D. (2009). A biologically inspired robot for lunar In-Situ Resource Utilization. 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, 5039–5044. https://doi.org/10.1109/IROS.2009.5354202 DOI: https://doi.org/10.1109/IROS.2009.5354202

Fingrut, A., & Leung, C. K. S. (2022). Rapid Assembly of Masonry Structures with Ad-Hoc Material Attributes, Computer Vision and SCARA Robots. Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (Eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, Pp. 11-20. https://papers.cumincad.org/cgi-bin/works/paper/caadria2022_72 DOI: https://doi.org/10.52842/conf.caadria.2022.2.011

Giftthaler, M., Sandy, T., Dörfler, K., Brooks, I., Buckingham, M., Rey, G., Kohler, M., Gramazio, F., & Buchli, J. (2017). Mobile robotic fabrication at 1:1 scale: The In situ Fabricator. Construction Robotics, 1(1), 3–14. https://doi.org/10.1007/s41693-017-0003-5 DOI: https://doi.org/10.1007/s41693-017-0003-5

Huang, C. (2021). Reinforcement Learning for Architectural Design-Build—Opportunity of Machine Learning in a Material-informed Circular Design Strategy. A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (Eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, Pp. 171-180. https://papers.cumincad.org/cgi-bin/works/paper/caadria2021_118 DOI: https://doi.org/10.52842/conf.caadria.2021.1.171

Jahn, G. F. (2022). Mixed reality fabrication—RMIT University [PhD Thesis, RMIT University]. https://researchrepository.rmit.edu.au/esploro/outputs/doctoral/Mixed-reality-fabrication/9922199313401341?institution=61RMIT_INST

Kaltenbrunner, M., & Bencina, R. (2007). reacTIVision: A computer-vision framework for table-based tangible interaction. Proceedings of the 1st International Conference on Tangible and Embedded Interaction, 69–74. https://doi.org/10.1145/1226969.1226983 DOI: https://doi.org/10.1145/1226969.1226983

Kunic, A., Kramberger, A., & Naboni, R. (2021). Cyber-Physical Robotic Process for Re-Configurable Wood Architecture—Closing the circular loop in wood architecture. Stojakovic, V and Tepavcevic, B (Eds.), Towards a New, Configurable Architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, Pp. 181-188. https://papers.cumincad.org/cgi-bin/works/paper/ecaade2021_205 DOI: https://doi.org/10.52842/conf.ecaade.2021.2.181

Lachmayer, L., Recker, T., Dielemans, G., Dörfler, K., & Raatz, A. (2022). Autonomous Sensing and Localization of a Mobile Robot for Multi-Step Additive Manufacturing in Construction. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B1-2022, 453–458. https://doi.org/10.5194/isprs-archives-XLIII-B1-2022-453-2022 DOI: https://doi.org/10.5194/isprs-archives-XLIII-B1-2022-453-2022

Leder, S., Weber, R., Wood, D., Bucklin, O., & Menges, A. (2019). Distributed Robotic Timber Construction: Designing of in-situ timber construction system with robot-material collaboration. https://doi.org/10.52842/conf.acadia.2019.510 DOI: https://doi.org/10.52842/conf.acadia.2019.510

Mangliár, L., & Hudert, M. (2022). Enabling circularity in building construction: Experiments with robotically assembled interlocking structures. In Structures and Architecture. A Viable Urban Perspective? CRC Press. DOI: https://doi.org/10.1201/9781003023555-70

Menges, A., & Knippers, J. (2020). Architecture Research Building: ICD/ITKE 2010-2020 (1st edition). Birkhäuser. DOI: https://doi.org/10.1515/9783035620405

Minibuilders—Institute for Advanced Architecture of Cataloni. (n.d.). IAAC. Retrieved July 27, 2023, from https://iaac.net/project/minibuilders/

Mobile robot from Mobile Industrial Robots—MiR100. (n.d.). Retrieved September 20, 2023, from https://www.mobile-industrial-robots.com/solutions/robots/mir100/

Norell, D., Rodhe, E., & Hedlund, K. (2020). Completions. ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. Edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. Del Campo. 446-455. https://papers.cumincad.org/cgi-bin/works/paper/acadia20_446 DOI: https://doi.org/10.52842/conf.acadia.2020.1.446

Pan, M., Linner, T., Cheng, H., Pan, W., & Bock, T. (2018). A Framework for Utilizing Automated and Robotic Construction for Sustainable Building (p. 88). https://doi.org/10.1007/978-981-10-6190-5_8 DOI: https://doi.org/10.1007/978-981-10-6190-5_8

Petersen, K. H., Nagpal, R., & Werfel, J. K. (2011). TERMES: An Autonomous Robotic System for Three-Dimensional Collective Construction. Robotics: Science and Systems VII. https://doi.org/10.15607/RSS.2011.VII.035 DOI: https://doi.org/10.15607/RSS.2011.VII.035

Petersen, K. H., Napp, N., Stuart-Smith, R., Rus, D., & Kovac, M. (2019). A review of collective robotic construction. Science Robotics, 4(28), eaau8479. DOI: https://doi.org/10.1126/scirobotics.aau8479

Popescu, G. (2008). Digital materials for digital fabrication. MIT.

Retsin, G. (2016). Discrete and Digital. TxA EMERGING DESIGN + TECHNOLOGY.

Rossi, A. (2023). Wasp—Discrete Design for Grasshopper [Python]. https://github.com/ar0551/Wasp (Original work published 2017)

Rotor Deconstruction – Reuse of building materials made easy. (n.d.). Rotor Deconstruction Scrl. Retrieved July 27, 2023, from https://rotordc.com/home

Sardenberg, V., & Becker, M. (2022, October 20). Aesthetic Measure of Architectural Photography utilizing Computer Vision: Parts-from-Wholes. Design Computation Input/Output 2022. Design Computation Input/Output 2022. https://doi.org/10.47330/DCIO.2022.GGNL1577 DOI: https://doi.org/10.47330/DCIO.2022.GGNL1577

Schumacher, P. (2012). The Autopoiesis of Architecture, Volume II: A New Agenda for Architecture (1. edition). Wiley.

Skibniewski, M. J., & Garcia de Soto, B. (2020). Future of robotics and automation in construction. In Construction 4.0. Routledge.

Tedbury, I. (2018). Relative Bricklaying Robot. Ivo Tedbury. https://www.tedbury.co.uk/relative-bricklaying-robot

Tedbury, I., & Vaughan, F. (2019). Walking Construction Robot Simulations. Ivo Tedbury. https://www.tedbury.co.uk/walking-construction-robot-simulations

Tessmann, O. (2012). Topological Interlocking Assemblies. Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (Eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, Pp. 211-219. https://papers.cumincad.org/cgi-bin/works/paper/ecaade2012_176 DOI: https://doi.org/10.52842/conf.ecaade.2012.2.211

visose. (2023). Robots [C#]. https://github.com/visose/Robots (Original work published 2015)

Yablonina, M., & Menges, A. (2019). Distributed Fabrication: Cooperative Making with Larger Groups of Smaller Machines. Architectural Design, 89(2), 62–69. https://doi.org/10.1002/ad.2413 DOI: https://doi.org/10.1002/ad.2413

Yoshida, T. (2006). A Short History of Construction Robots Research & Development in a Japanese Company. ISARC Proceedings, 188–193. DOI: https://doi.org/10.22260/ISARC2006/0037

Zhang, K., Chermprayong, P., Xiao, F., Tzoumanikas, D., Dams, B., Kay, S., Kocer, B. B., Burns, A., Orr, L., Choi, C., Darekar, D. D., Li, W., Hirschmann, S., Soana, V., Ngah, S. A., Sareh, S., Choubey, A., Margheri, L., Pawar, V. M., … Kovac, M. (2022). Aerial additive manufacturing with multiple autonomous robots. Nature, 609(7928), Article 7928. https://doi.org/10.1038/s41586-022-04988-4 DOI: https://doi.org/10.1038/s41586-022-04988-4