Goldinger / Drifting Space and Unruly Velocities: More-than-Human Marine Spatial Planning in the Fram Strait
Drifting Space and Unruly Velocities

More-than-Human Marine Spatial Planning in the Fram Strait

Authors

Downloads

DOI:

https://doi.org/10.47982/spool.2025.2.06

Keywords:

Arctic ocean, drifting, marine spatial planning, more-than-human, more-than-wet, oceanic urbanisation, sea ice

Abstract

This visual essay explores the translation of complex environments through representations with attributes that are summarized as ‘interdimensional’. These attributes are not elaborated yet, but the term emphasizes that these representations integrate different dimensions of experiencing and understanding various spatial scales and temporal perspectives. The process of producing these representations requires the landscape architect to encounter, investigate, and communicate life, materiality, and processes in an approach that appreciates attentiveness and creativity.

The representations discussed were developed in the context of a design studio at the University of Edinburgh that was elaborated and led by the author and situated within the Highland Boundary Fault Zone in Scotland. A studio collective composed of Master’s students in Landscape Architecture over two years has been encouraged to traverse the fault zone, taking into account social, ecological, and geological fractures, as well as points of tension and upheaval.

Operating from within the ‘critical zone’, the provocation of the late Bruno Latour and his collaborators has been adopted: that working from this perspective is necessary to recognize that we humans are ‘living among the living’ (Société d’Objets Cartographiques [SOC] 2018). The design studio’s approach encourages experimental drawing and making to develop ‘ecologically explicit’ landscape architecture—landscape interpretations and design propositions—that foreground and support more-than-human worlds.

How to Cite

Goldinger, A. S. (2025). Drifting Space and Unruly Velocities: More-than-Human Marine Spatial Planning in the Fram Strait. SPOOL, 12(2), 79–94. https://doi.org/10.47982/spool.2025.2.06

Published

2025-07-19

References

AMSR2. (23.03.2023). Daily Sea ice extent. [Dataset].

Arctic Monitoring and Assessment Programme (AMAP). (2018). AMAP Assessment 2018: Arctic Ocean Acidification [Report].

Bay-Larsen, I., Bjørndal, T. G., & Hermansen, E. A. T. (2021). Mapping ice in the Norwegian Arctic–on the edge between science and policy. Landscape Research, 46(2), 167–181. https://doi.org/10.1080/01426397.2020.1740664 DOI: https://doi.org/10.1080/01426397.2020.1740664

Bennett, M. M., Stephenson, S. R., Yang, K., Bravo, M. T., & de Jonghe, B. (2020). The opening of the Transpolar Sea Route: Logistical, geopolitical, environmental, and socioeconomic impacts. Marine Policy, 121, 104178. https://doi.org/10.1016/J.MARPOL.2020.104178 DOI: https://doi.org/10.1016/j.marpol.2020.104178

Berkman, P. A., Fiske, G. & Lorenzini, D. (2020). Baseline of Next-Generation Arctic Marine Shipping Assessments - Oldest Continuous Pan-Arctic Satellite Automatic Identification System (AIS) Data Record of Maritime Ship Traffic, 2009-2016. NSF Arctic Data Center. [Dataset]. DOI: https://doi.org/10.1007/978-3-030-25674-6_11

Bode, C. & Yarina, L. (2020). Thick representations for oceanic space. In N. Couling & C. Hein (Eds.), The Urbanisation of the Sea: From concepts and analysis to design.

Brenner, N., & Katsikis, N. (2020). Operational Landscapes: Hinterlands of the Capitalocene. Architectural Design, 90(1), 22–31. https://doi.org/10.1002/ad.2521 DOI: https://doi.org/10.1002/ad.2521

Climate Prediction Center, National Weather Service. (2023). Climate indicators – Arctic Oscillation. https://www.pmel.noaa.gov/arctic-zone/detect/climate-ao.shtml

Couling, N. (2022). Imagining the Invisible: Spatial Design for the North Sea. Planning Practice and Research, 37(3), 276–298. https://doi.org/10.1080/02697459.2022.2026679 DOI: https://doi.org/10.1080/02697459.2022.2026679

Couling, N. (2018). Formats of extended urbanisation in ocean Space. In P. Horn, P. A. d’Alencon, & A. C. D. Cardoso (Eds.), Urban Book Series (pp. 149–176). Springer. https://doi.org/10.1007/978-3-319-57816-3_8 DOI: https://doi.org/10.1007/978-3-319-57816-3_8

Couling, N. & Hein, C. (Eds.). (2020). The Urbanisation of the Sea: From Concepts and Analysis to Design. nai010. https://doi.org/10.7480/isbn.9789462085930

Directorate-General for Maritime Affairs and Fisheries. (25.06.2021). International Agreement to Prevent Unregulated Fishing in the High Seas of the Central Arctic Ocean [Agreement].

Edwards, C. (2019). The ocean is in (planetary) excess. Dialogues in Human Geography, 9(3), 312–315. https://doi.org/10.1177/2043820619878568 DOI: https://doi.org/10.1177/2043820619878568

Eumetsat. (2023). Sea ice drift [Dataset].

Frey, K. E., Comiso, J. C., Cooper, L. W., Gradinger, R. R., Grebmeier, J. M. & Tremblay, J. -É. (2016). Arctic Ocean Primary Productivity. NOAA Arctic Report Card [Report].

GEBCO Compilation Group. (2023). GEBCO 2023 Grid (sub-ice topo/bathy) [Dataset].

Huserbråten, M.B.O., Eriksen, E., Gjøsæter, H. & Vikebø, F. (2019). Polar cod in jeopardy under the retreating Arctic sea ice. Communications Biology, 2, 407. https://doi.org/10.1038/s42003-019-0649-2 DOI: https://doi.org/10.1038/s42003-019-0649-2

Intergovernmental Panel on Climate Change (IPPC). (2019). Special Report on the Ocean and Cryosphere in a Changing Climate [Report].

International Maritime Organization (IMO). (2022). MARPOL. International Maritime Organization

Kaur, S., Ehn, J. & Barber, D. (2019). Pan-arctic winter drift speeds and changing patterns of sea ice motion: 1979–2015. Polar Record 54, 1-9. https://doi.org/10.1017/S0032247418000566 DOI: https://doi.org/10.1017/S0032247418000566

Kim YH., Min, SK., Gillett, N.P. et al. (2023). Observationally-constrained projections of an ice-free Arctic, even under a low-emission scenario. Nature Communications, 14, 3139. https://doi.org/10.1038/s41467-023-38511-8 DOI: https://doi.org/10.1038/s41467-023-38511-8

Kiss, D., & Chaturvedi, S. (2022). Dynamic Domains of Antarctica: A Design Model of Global Commons in Sync with Planetary Metabolism. Architectural Design, 92(1), 44–53. https://doi.org/10.1002/ad.2772 DOI: https://doi.org/10.1002/ad.2772

Krumpen, T., Belter, H. J., Boetius, A., Damm, E., Haas, C., Hendricks, S., Nicolaus, M., Nöthig, E., Paul, S., Peeken, I. Ricker, R. & Stein, R. (2019). Arctic warming interrupts the Transpolar Drift and affects the long-range transport of sea ice and ice-rafted matter. Scientific Reports, 9. https://doi.org/10.1038/s41598-019-41456-y DOI: https://doi.org/10.1038/s41598-019-41456-y

Lannuzel, D., Tedesco, L., van Leeuwe, M., Campbell, K., Flores, H., Delille, B., Miller, L., Stefels, J., Assmy, P., Bowman, J., Brown, K., Castellani, G., Chierici, M., Crabeck, O., Damm, E., Else, B. Fransson, A., Fripiat, F., Geilfus, N., … Wongpan, P. (2020). The future of Arctic sea-ice biogeochemistry and ice-associated ecosystems. Nature Climate Change, 10, 983–992. https://doi.org/10.1038/s41558-020-00940-4 DOI: https://doi.org/10.1038/s41558-020-00940-4

Meier, W.N., Perovich, D., Farrell, S., Haas, C., Hendricks, S., Petty, A., Webster, M., Divine, D., Gerland, S. & Kaleschke, L. (2021). NOAA Arctic Report Card: Sea Ice [Report].

Nahrgang, J., Dubourg, P., Frantzen, M., Storch, D., Dahlke, F., Meador, J. P. (2016). Early life stages of an arctic keystone species (Boreogadus saida) show high sensitivity to a water-soluble fraction of crude oil. Environ Pollut 218, 605-614. https://doi.org/10.1016/j.envpol.2016.07.044. DOI: https://doi.org/10.1016/j.envpol.2016.07.044

Norwegian Institute of Marine Research. (2023). Multibeam sonar scan obtained during a winter research expedition. [Dataset].

Oljedirektoratet. (27.01.2023). Ressursvurdering havbunnsmineraler [Report].

PAME. (2019). Arctic Shipping Status Reports #1-2 [Report].

Peters, K. (2015). Drifting: Towards mobilities at sea. Transactions of the Institute of British Geographers, 40(2), 262–272. https://doi.org/10.1111/tran.12074 DOI: https://doi.org/10.1111/tran.12074

Peters, K., & Brown, M. (2017). Writing with the sea. Cultural Geographies, 24(4), 617–624. DOI: https://doi.org/10.1177/1474474017702510

https://doi.org/10.2307/26402600

Peters, K., & Steinberg, P. (2019). The ocean in excess: Towards a more-than-wet ontology. Dialogues in Human Geography, 9(3), 293–307. https://doi.org/10.1177/2043820619872886 DOI: https://doi.org/10.1177/2043820619872886

Peters, K., Steinberg, P., & Stratford, E. (2018). Introduction. In K. Peters, P. Steinberg, & E. Stratford (Eds.), Territory Beyond Terra (pp. 1–14). Rowman & Littlefield International. DOI: https://doi.org/10.5040/9798881817176.ch-001

Rowe, M. (12.08.2022). Arctic nations are squaring up to exploit the region’s rich natural resources. Geographical.

SAMBR. (2017). Circumpolar map of known polynyas. [Dataset].

Shake, K. L., Frey, K. E., Martin, D. G., & Steinberg, P. E. (2018). (Un) Frozen Spaces: Exploring the Role of Sea Ice in the Marine Socio-legal Spaces of the Bering and Beaufort Seas. Journal of Borderlands Studies, 33(2), 239–253. https://doi.org/10.1080/08865655.2017.134047 DOI: https://doi.org/10.1080/08865655.2017.1340847

Steinberg, P., & Kristoffersen, B. (2017). ‘The ice edge is lost … nature moved it’: mapping ice as state practice in the Canadian and Norwegian North. Transactions of the Institute of British Geographers, 42(4). https://doi.org/10.1111/tran.12184 DOI: https://doi.org/10.1111/tran.12184

Steinberg, P., & Peters, K. (2015). Wet ontologies, fluid spaces: Giving depth to volume through oceanic thinking. Environment and Planning D: Society and Space, 33(2), 247–264. https://doi.org/10.1068/d14148p DOI: https://doi.org/10.1068/d14148p

Zhang, Q., Wan, Z., Hemmings, B. & Abbasov, F. (2019). Reducing black carbon emissions from Arctic shipping: Solutions and policy implications. Journal of Cleaner Production, 241. https://doi.org/10.1016/j.jclepro.2019.118261 DOI: https://doi.org/10.1016/j.jclepro.2019.118261